1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
|
#include "rb_lapack.h"
extern VOID dlag2s_(integer* m, integer* n, doublereal* a, integer* lda, real* sa, integer* ldsa, integer* info);
static VALUE
rblapack_dlag2s(int argc, VALUE *argv, VALUE self){
VALUE rblapack_m;
integer m;
VALUE rblapack_a;
doublereal *a;
VALUE rblapack_sa;
real *sa;
VALUE rblapack_info;
integer info;
integer lda;
integer n;
integer ldsa;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n sa, info = NumRu::Lapack.dlag2s( m, a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DLAG2S( M, N, A, LDA, SA, LDSA, INFO )\n\n* Purpose\n* =======\n*\n* DLAG2S converts a DOUBLE PRECISION matrix, SA, to a SINGLE\n* PRECISION matrix, A.\n*\n* RMAX is the overflow for the SINGLE PRECISION arithmetic\n* DLAG2S checks that all the entries of A are between -RMAX and\n* RMAX. If not the conversion is aborted and a flag is raised.\n*\n* This is an auxiliary routine so there is no argument checking.\n*\n\n* Arguments\n* =========\n*\n* M (input) INTEGER\n* The number of lines of the matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrix A. N >= 0.\n*\n* A (input) DOUBLE PRECISION array, dimension (LDA,N)\n* On entry, the M-by-N coefficient matrix A.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* SA (output) REAL array, dimension (LDSA,N)\n* On exit, if INFO=0, the M-by-N coefficient matrix SA; if\n* INFO>0, the content of SA is unspecified.\n*\n* LDSA (input) INTEGER\n* The leading dimension of the array SA. LDSA >= max(1,M).\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* = 1: an entry of the matrix A is greater than the SINGLE\n* PRECISION overflow threshold, in this case, the content\n* of SA in exit is unspecified.\n*\n* =========\n*\n* .. Local Scalars ..\n INTEGER I, J\n DOUBLE PRECISION RMAX\n* ..\n* .. External Functions ..\n REAL SLAMCH\n EXTERNAL SLAMCH\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n sa, info = NumRu::Lapack.dlag2s( m, a, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 2 && argc != 2)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
rblapack_m = argv[0];
rblapack_a = argv[1];
if (argc == 2) {
} else if (rblapack_options != Qnil) {
} else {
}
m = NUM2INT(rblapack_m);
ldsa = MAX(1,m);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (2th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_DFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
a = NA_PTR_TYPE(rblapack_a, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldsa;
shape[1] = n;
rblapack_sa = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
sa = NA_PTR_TYPE(rblapack_sa, real*);
dlag2s_(&m, &n, a, &lda, sa, &ldsa, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_sa, rblapack_info);
}
void
init_lapack_dlag2s(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dlag2s", rblapack_dlag2s, -1);
}
|