File: dlagtf.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (140 lines) | stat: -rw-r--r-- 8,076 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#include "rb_lapack.h"

extern VOID dlagtf_(integer* n, doublereal* a, doublereal* lambda, doublereal* b, doublereal* c, doublereal* tol, doublereal* d, integer* in, integer* info);


static VALUE
rblapack_dlagtf(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_a;
  doublereal *a; 
  VALUE rblapack_lambda;
  doublereal lambda; 
  VALUE rblapack_b;
  doublereal *b; 
  VALUE rblapack_c;
  doublereal *c; 
  VALUE rblapack_tol;
  doublereal tol; 
  VALUE rblapack_d;
  doublereal *d; 
  VALUE rblapack_in;
  integer *in; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  doublereal *a_out__;
  VALUE rblapack_b_out__;
  doublereal *b_out__;
  VALUE rblapack_c_out__;
  doublereal *c_out__;

  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  d, in, info, a, b, c = NumRu::Lapack.dlagtf( a, lambda, b, c, tol, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE DLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )\n\n*  Purpose\n*  =======\n*\n*  DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n\n*  tridiagonal matrix and lambda is a scalar, as\n*\n*     T - lambda*I = PLU,\n*\n*  where P is a permutation matrix, L is a unit lower tridiagonal matrix\n*  with at most one non-zero sub-diagonal elements per column and U is\n*  an upper triangular matrix with at most two non-zero super-diagonal\n*  elements per column.\n*\n*  The factorization is obtained by Gaussian elimination with partial\n*  pivoting and implicit row scaling.\n*\n*  The parameter LAMBDA is included in the routine so that DLAGTF may\n*  be used, in conjunction with DLAGTS, to obtain eigenvectors of T by\n*  inverse iteration.\n*\n\n*  Arguments\n*  =========\n*\n*  N       (input) INTEGER\n*          The order of the matrix T.\n*\n*  A       (input/output) DOUBLE PRECISION array, dimension (N)\n*          On entry, A must contain the diagonal elements of T.\n*\n*          On exit, A is overwritten by the n diagonal elements of the\n*          upper triangular matrix U of the factorization of T.\n*\n*  LAMBDA  (input) DOUBLE PRECISION\n*          On entry, the scalar lambda.\n*\n*  B       (input/output) DOUBLE PRECISION array, dimension (N-1)\n*          On entry, B must contain the (n-1) super-diagonal elements of\n*          T.\n*\n*          On exit, B is overwritten by the (n-1) super-diagonal\n*          elements of the matrix U of the factorization of T.\n*\n*  C       (input/output) DOUBLE PRECISION array, dimension (N-1)\n*          On entry, C must contain the (n-1) sub-diagonal elements of\n*          T.\n*\n*          On exit, C is overwritten by the (n-1) sub-diagonal elements\n*          of the matrix L of the factorization of T.\n*\n*  TOL     (input) DOUBLE PRECISION\n*          On entry, a relative tolerance used to indicate whether or\n*          not the matrix (T - lambda*I) is nearly singular. TOL should\n*          normally be chose as approximately the largest relative error\n*          in the elements of T. For example, if the elements of T are\n*          correct to about 4 significant figures, then TOL should be\n*          set to about 5*10**(-4). If TOL is supplied as less than eps,\n*          where eps is the relative machine precision, then the value\n*          eps is used in place of TOL.\n*\n*  D       (output) DOUBLE PRECISION array, dimension (N-2)\n*          On exit, D is overwritten by the (n-2) second super-diagonal\n*          elements of the matrix U of the factorization of T.\n*\n*  IN      (output) INTEGER array, dimension (N)\n*          On exit, IN contains details of the permutation matrix P. If\n*          an interchange occurred at the kth step of the elimination,\n*          then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)\n*          returns the smallest positive integer j such that\n*\n*             abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,\n*\n*          where norm( A(j) ) denotes the sum of the absolute values of\n*          the jth row of the matrix A. If no such j exists then IN(n)\n*          is returned as zero. If IN(n) is returned as positive, then a\n*          diagonal element of U is small, indicating that\n*          (T - lambda*I) is singular or nearly singular,\n*\n*  INFO    (output) INTEGER\n*          = 0   : successful exit\n*          .lt. 0: if INFO = -k, the kth argument had an illegal value\n*\n\n* =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  d, in, info, a, b, c = NumRu::Lapack.dlagtf( a, lambda, b, c, tol, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 5 && argc != 5)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
  rblapack_a = argv[0];
  rblapack_lambda = argv[1];
  rblapack_b = argv[2];
  rblapack_c = argv[3];
  rblapack_tol = argv[4];
  if (argc == 5) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (1th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 1)
    rb_raise(rb_eArgError, "rank of a (1th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_DFLOAT)
    rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
  a = NA_PTR_TYPE(rblapack_a, doublereal*);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (3th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 1)
    rb_raise(rb_eArgError, "rank of b (3th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_b) != (n-1))
    rb_raise(rb_eRuntimeError, "shape 0 of b must be %d", n-1);
  if (NA_TYPE(rblapack_b) != NA_DFLOAT)
    rblapack_b = na_change_type(rblapack_b, NA_DFLOAT);
  b = NA_PTR_TYPE(rblapack_b, doublereal*);
  tol = NUM2DBL(rblapack_tol);
  lambda = NUM2DBL(rblapack_lambda);
  if (!NA_IsNArray(rblapack_c))
    rb_raise(rb_eArgError, "c (4th argument) must be NArray");
  if (NA_RANK(rblapack_c) != 1)
    rb_raise(rb_eArgError, "rank of c (4th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_c) != (n-1))
    rb_raise(rb_eRuntimeError, "shape 0 of c must be %d", n-1);
  if (NA_TYPE(rblapack_c) != NA_DFLOAT)
    rblapack_c = na_change_type(rblapack_c, NA_DFLOAT);
  c = NA_PTR_TYPE(rblapack_c, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = n-2;
    rblapack_d = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  d = NA_PTR_TYPE(rblapack_d, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_in = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  in = NA_PTR_TYPE(rblapack_in, integer*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_a_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublereal*);
  MEMCPY(a_out__, a, doublereal, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  {
    na_shape_t shape[1];
    shape[0] = n-1;
    rblapack_b_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublereal*);
  MEMCPY(b_out__, b, doublereal, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;
  {
    na_shape_t shape[1];
    shape[0] = n-1;
    rblapack_c_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  c_out__ = NA_PTR_TYPE(rblapack_c_out__, doublereal*);
  MEMCPY(c_out__, c, doublereal, NA_TOTAL(rblapack_c));
  rblapack_c = rblapack_c_out__;
  c = c_out__;

  dlagtf_(&n, a, &lambda, b, c, &tol, d, in, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(6, rblapack_d, rblapack_in, rblapack_info, rblapack_a, rblapack_b, rblapack_c);
}

void
init_lapack_dlagtf(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "dlagtf", rblapack_dlagtf, -1);
}