File: dlaneg.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (83 lines) | stat: -rw-r--r-- 4,763 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#include "rb_lapack.h"

extern integer dlaneg_(integer* n, doublereal* d, doublereal* lld, doublereal* sigma, doublereal* pivmin, integer* r);


static VALUE
rblapack_dlaneg(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_d;
  doublereal *d; 
  VALUE rblapack_lld;
  doublereal *lld; 
  VALUE rblapack_sigma;
  doublereal sigma; 
  VALUE rblapack_pivmin;
  doublereal pivmin; 
  VALUE rblapack_r;
  integer r; 
  VALUE rblapack___out__;
  integer __out__; 

  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  __out__ = NumRu::Lapack.dlaneg( d, lld, sigma, pivmin, r, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      INTEGER FUNCTION DLANEG( N, D, LLD, SIGMA, PIVMIN, R )\n\n*  Purpose\n*  =======\n*\n*  DLANEG computes the Sturm count, the number of negative pivots\n*  encountered while factoring tridiagonal T - sigma I = L D L^T.\n*  This implementation works directly on the factors without forming\n*  the tridiagonal matrix T.  The Sturm count is also the number of\n*  eigenvalues of T less than sigma.\n*\n*  This routine is called from DLARRB.\n*\n*  The current routine does not use the PIVMIN parameter but rather\n*  requires IEEE-754 propagation of Infinities and NaNs.  This\n*  routine also has no input range restrictions but does require\n*  default exception handling such that x/0 produces Inf when x is\n*  non-zero, and Inf/Inf produces NaN.  For more information, see:\n*\n*    Marques, Riedy, and Voemel, \"Benefits of IEEE-754 Features in\n*    Modern Symmetric Tridiagonal Eigensolvers,\" SIAM Journal on\n*    Scientific Computing, v28, n5, 2006.  DOI 10.1137/050641624\n*    (Tech report version in LAWN 172 with the same title.)\n*\n\n*  Arguments\n*  =========\n*\n*  N       (input) INTEGER\n*          The order of the matrix.\n*\n*  D       (input) DOUBLE PRECISION array, dimension (N)\n*          The N diagonal elements of the diagonal matrix D.\n*\n*  LLD     (input) DOUBLE PRECISION array, dimension (N-1)\n*          The (N-1) elements L(i)*L(i)*D(i).\n*\n*  SIGMA   (input) DOUBLE PRECISION\n*          Shift amount in T - sigma I = L D L^T.\n*\n*  PIVMIN  (input) DOUBLE PRECISION\n*          The minimum pivot in the Sturm sequence.  May be used\n*          when zero pivots are encountered on non-IEEE-754\n*          architectures.\n*\n*  R       (input) INTEGER\n*          The twist index for the twisted factorization that is used\n*          for the negcount.\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Osni Marques, LBNL/NERSC, USA\n*     Christof Voemel, University of California, Berkeley, USA\n*     Jason Riedy, University of California, Berkeley, USA\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  __out__ = NumRu::Lapack.dlaneg( d, lld, sigma, pivmin, r, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 5 && argc != 5)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
  rblapack_d = argv[0];
  rblapack_lld = argv[1];
  rblapack_sigma = argv[2];
  rblapack_pivmin = argv[3];
  rblapack_r = argv[4];
  if (argc == 5) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  if (!NA_IsNArray(rblapack_d))
    rb_raise(rb_eArgError, "d (1th argument) must be NArray");
  if (NA_RANK(rblapack_d) != 1)
    rb_raise(rb_eArgError, "rank of d (1th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_d);
  if (NA_TYPE(rblapack_d) != NA_DFLOAT)
    rblapack_d = na_change_type(rblapack_d, NA_DFLOAT);
  d = NA_PTR_TYPE(rblapack_d, doublereal*);
  sigma = NUM2DBL(rblapack_sigma);
  r = NUM2INT(rblapack_r);
  if (!NA_IsNArray(rblapack_lld))
    rb_raise(rb_eArgError, "lld (2th argument) must be NArray");
  if (NA_RANK(rblapack_lld) != 1)
    rb_raise(rb_eArgError, "rank of lld (2th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_lld) != (n-1))
    rb_raise(rb_eRuntimeError, "shape 0 of lld must be %d", n-1);
  if (NA_TYPE(rblapack_lld) != NA_DFLOAT)
    rblapack_lld = na_change_type(rblapack_lld, NA_DFLOAT);
  lld = NA_PTR_TYPE(rblapack_lld, doublereal*);
  pivmin = NUM2DBL(rblapack_pivmin);

  __out__ = dlaneg_(&n, d, lld, &sigma, &pivmin, &r);

  rblapack___out__ = INT2NUM(__out__);
  return rblapack___out__;
}

void
init_lapack_dlaneg(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "dlaneg", rblapack_dlaneg, -1);
}