1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
|
#include "rb_lapack.h"
extern doublereal dlansb_(char* norm, char* uplo, integer* n, integer* k, doublereal* ab, integer* ldab, doublereal* work);
static VALUE
rblapack_dlansb(int argc, VALUE *argv, VALUE self){
VALUE rblapack_norm;
char norm;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_k;
integer k;
VALUE rblapack_ab;
doublereal *ab;
VALUE rblapack___out__;
doublereal __out__;
doublereal *work;
integer ldab;
integer n;
integer lwork;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n __out__ = NumRu::Lapack.dlansb( norm, uplo, k, ab, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n DOUBLE PRECISION FUNCTION DLANSB( NORM, UPLO, N, K, AB, LDAB, WORK )\n\n* Purpose\n* =======\n*\n* DLANSB returns the value of the one norm, or the Frobenius norm, or\n* the infinity norm, or the element of largest absolute value of an\n* n by n symmetric band matrix A, with k super-diagonals.\n*\n* Description\n* ===========\n*\n* DLANSB returns the value\n*\n* DLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'\n* (\n* ( norm1(A), NORM = '1', 'O' or 'o'\n* (\n* ( normI(A), NORM = 'I' or 'i'\n* (\n* ( normF(A), NORM = 'F', 'f', 'E' or 'e'\n*\n* where norm1 denotes the one norm of a matrix (maximum column sum),\n* normI denotes the infinity norm of a matrix (maximum row sum) and\n* normF denotes the Frobenius norm of a matrix (square root of sum of\n* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.\n*\n\n* Arguments\n* =========\n*\n* NORM (input) CHARACTER*1\n* Specifies the value to be returned in DLANSB as described\n* above.\n*\n* UPLO (input) CHARACTER*1\n* Specifies whether the upper or lower triangular part of the\n* band matrix A is supplied.\n* = 'U': Upper triangular part is supplied\n* = 'L': Lower triangular part is supplied\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0. When N = 0, DLANSB is\n* set to zero.\n*\n* K (input) INTEGER\n* The number of super-diagonals or sub-diagonals of the\n* band matrix A. K >= 0.\n*\n* AB (input) DOUBLE PRECISION array, dimension (LDAB,N)\n* The upper or lower triangle of the symmetric band matrix A,\n* stored in the first K+1 rows of AB. The j-th column of A is\n* stored in the j-th column of the array AB as follows:\n* if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;\n* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).\n*\n* LDAB (input) INTEGER\n* The leading dimension of the array AB. LDAB >= K+1.\n*\n* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),\n* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,\n* WORK is not referenced.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n __out__ = NumRu::Lapack.dlansb( norm, uplo, k, ab, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 4 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
rblapack_norm = argv[0];
rblapack_uplo = argv[1];
rblapack_k = argv[2];
rblapack_ab = argv[3];
if (argc == 4) {
} else if (rblapack_options != Qnil) {
} else {
}
norm = StringValueCStr(rblapack_norm)[0];
k = NUM2INT(rblapack_k);
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (4th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (4th argument) must be %d", 2);
ldab = NA_SHAPE0(rblapack_ab);
n = NA_SHAPE1(rblapack_ab);
if (NA_TYPE(rblapack_ab) != NA_DFLOAT)
rblapack_ab = na_change_type(rblapack_ab, NA_DFLOAT);
ab = NA_PTR_TYPE(rblapack_ab, doublereal*);
lwork = ((lsame_(&norm,"I")) || ((('1') || ('o')))) ? n : 0;
work = ALLOC_N(doublereal, (MAX(1,lwork)));
__out__ = dlansb_(&norm, &uplo, &n, &k, ab, &ldab, work);
free(work);
rblapack___out__ = rb_float_new((double)__out__);
return rblapack___out__;
}
void
init_lapack_dlansb(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dlansb", rblapack_dlansb, -1);
}
|