File: dlaqgb.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (117 lines) | stat: -rw-r--r-- 6,682 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#include "rb_lapack.h"

extern VOID dlaqgb_(integer* m, integer* n, integer* kl, integer* ku, doublereal* ab, integer* ldab, doublereal* r, doublereal* c, doublereal* rowcnd, doublereal* colcnd, doublereal* amax, char* equed);


static VALUE
rblapack_dlaqgb(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_kl;
  integer kl; 
  VALUE rblapack_ku;
  integer ku; 
  VALUE rblapack_ab;
  doublereal *ab; 
  VALUE rblapack_r;
  doublereal *r; 
  VALUE rblapack_c;
  doublereal *c; 
  VALUE rblapack_rowcnd;
  doublereal rowcnd; 
  VALUE rblapack_colcnd;
  doublereal colcnd; 
  VALUE rblapack_amax;
  doublereal amax; 
  VALUE rblapack_equed;
  char equed; 
  VALUE rblapack_ab_out__;
  doublereal *ab_out__;

  integer ldab;
  integer n;
  integer m;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  equed, ab = NumRu::Lapack.dlaqgb( kl, ku, ab, r, c, rowcnd, colcnd, amax, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE DLAQGB( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, AMAX, EQUED )\n\n*  Purpose\n*  =======\n*\n*  DLAQGB equilibrates a general M by N band matrix A with KL\n*  subdiagonals and KU superdiagonals using the row and scaling factors\n*  in the vectors R and C.\n*\n\n*  Arguments\n*  =========\n*\n*  M       (input) INTEGER\n*          The number of rows of the matrix A.  M >= 0.\n*\n*  N       (input) INTEGER\n*          The number of columns of the matrix A.  N >= 0.\n*\n*  KL      (input) INTEGER\n*          The number of subdiagonals within the band of A.  KL >= 0.\n*\n*  KU      (input) INTEGER\n*          The number of superdiagonals within the band of A.  KU >= 0.\n*\n*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N)\n*          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.\n*          The j-th column of A is stored in the j-th column of the\n*          array AB as follows:\n*          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)\n*\n*          On exit, the equilibrated matrix, in the same storage format\n*          as A.  See EQUED for the form of the equilibrated matrix.\n*\n*  LDAB    (input) INTEGER\n*          The leading dimension of the array AB.  LDA >= KL+KU+1.\n*\n*  R       (input) DOUBLE PRECISION array, dimension (M)\n*          The row scale factors for A.\n*\n*  C       (input) DOUBLE PRECISION array, dimension (N)\n*          The column scale factors for A.\n*\n*  ROWCND  (input) DOUBLE PRECISION\n*          Ratio of the smallest R(i) to the largest R(i).\n*\n*  COLCND  (input) DOUBLE PRECISION\n*          Ratio of the smallest C(i) to the largest C(i).\n*\n*  AMAX    (input) DOUBLE PRECISION\n*          Absolute value of largest matrix entry.\n*\n*  EQUED   (output) CHARACTER*1\n*          Specifies the form of equilibration that was done.\n*          = 'N':  No equilibration\n*          = 'R':  Row equilibration, i.e., A has been premultiplied by\n*                  diag(R).\n*          = 'C':  Column equilibration, i.e., A has been postmultiplied\n*                  by diag(C).\n*          = 'B':  Both row and column equilibration, i.e., A has been\n*                  replaced by diag(R) * A * diag(C).\n*\n*  Internal Parameters\n*  ===================\n*\n*  THRESH is a threshold value used to decide if row or column scaling\n*  should be done based on the ratio of the row or column scaling\n*  factors.  If ROWCND < THRESH, row scaling is done, and if\n*  COLCND < THRESH, column scaling is done.\n*\n*  LARGE and SMALL are threshold values used to decide if row scaling\n*  should be done based on the absolute size of the largest matrix\n*  element.  If AMAX > LARGE or AMAX < SMALL, row scaling is done.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  equed, ab = NumRu::Lapack.dlaqgb( kl, ku, ab, r, c, rowcnd, colcnd, amax, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 8 && argc != 8)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
  rblapack_kl = argv[0];
  rblapack_ku = argv[1];
  rblapack_ab = argv[2];
  rblapack_r = argv[3];
  rblapack_c = argv[4];
  rblapack_rowcnd = argv[5];
  rblapack_colcnd = argv[6];
  rblapack_amax = argv[7];
  if (argc == 8) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  kl = NUM2INT(rblapack_kl);
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (3th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (3th argument) must be %d", 2);
  ldab = NA_SHAPE0(rblapack_ab);
  n = NA_SHAPE1(rblapack_ab);
  if (NA_TYPE(rblapack_ab) != NA_DFLOAT)
    rblapack_ab = na_change_type(rblapack_ab, NA_DFLOAT);
  ab = NA_PTR_TYPE(rblapack_ab, doublereal*);
  if (!NA_IsNArray(rblapack_c))
    rb_raise(rb_eArgError, "c (5th argument) must be NArray");
  if (NA_RANK(rblapack_c) != 1)
    rb_raise(rb_eArgError, "rank of c (5th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_c) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of c must be the same as shape 1 of ab");
  if (NA_TYPE(rblapack_c) != NA_DFLOAT)
    rblapack_c = na_change_type(rblapack_c, NA_DFLOAT);
  c = NA_PTR_TYPE(rblapack_c, doublereal*);
  colcnd = NUM2DBL(rblapack_colcnd);
  ku = NUM2INT(rblapack_ku);
  rowcnd = NUM2DBL(rblapack_rowcnd);
  if (!NA_IsNArray(rblapack_r))
    rb_raise(rb_eArgError, "r (4th argument) must be NArray");
  if (NA_RANK(rblapack_r) != 1)
    rb_raise(rb_eArgError, "rank of r (4th argument) must be %d", 1);
  m = NA_SHAPE0(rblapack_r);
  if (NA_TYPE(rblapack_r) != NA_DFLOAT)
    rblapack_r = na_change_type(rblapack_r, NA_DFLOAT);
  r = NA_PTR_TYPE(rblapack_r, doublereal*);
  amax = NUM2DBL(rblapack_amax);
  {
    na_shape_t shape[2];
    shape[0] = ldab;
    shape[1] = n;
    rblapack_ab_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
  }
  ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, doublereal*);
  MEMCPY(ab_out__, ab, doublereal, NA_TOTAL(rblapack_ab));
  rblapack_ab = rblapack_ab_out__;
  ab = ab_out__;

  dlaqgb_(&m, &n, &kl, &ku, ab, &ldab, r, c, &rowcnd, &colcnd, &amax, &equed);

  rblapack_equed = rb_str_new(&equed,1);
  return rb_ary_new3(2, rblapack_equed, rblapack_ab);
}

void
init_lapack_dlaqgb(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "dlaqgb", rblapack_dlaqgb, -1);
}