1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
#include "rb_lapack.h"
extern VOID dlarfx_(char* side, integer* m, integer* n, doublereal* v, doublereal* tau, doublereal* c, integer* ldc, doublereal* work);
static VALUE
rblapack_dlarfx(int argc, VALUE *argv, VALUE self){
VALUE rblapack_side;
char side;
VALUE rblapack_v;
doublereal *v;
VALUE rblapack_tau;
doublereal tau;
VALUE rblapack_c;
doublereal *c;
VALUE rblapack_c_out__;
doublereal *c_out__;
doublereal *work;
integer m;
integer ldc;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n c = NumRu::Lapack.dlarfx( side, v, tau, c, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DLARFX( SIDE, M, N, V, TAU, C, LDC, WORK )\n\n* Purpose\n* =======\n*\n* DLARFX applies a real elementary reflector H to a real m by n\n* matrix C, from either the left or the right. H is represented in the\n* form\n*\n* H = I - tau * v * v'\n*\n* where tau is a real scalar and v is a real vector.\n*\n* If tau = 0, then H is taken to be the unit matrix\n*\n* This version uses inline code if H has order < 11.\n*\n\n* Arguments\n* =========\n*\n* SIDE (input) CHARACTER*1\n* = 'L': form H * C\n* = 'R': form C * H\n*\n* M (input) INTEGER\n* The number of rows of the matrix C.\n*\n* N (input) INTEGER\n* The number of columns of the matrix C.\n*\n* V (input) DOUBLE PRECISION array, dimension (M) if SIDE = 'L'\n* or (N) if SIDE = 'R'\n* The vector v in the representation of H.\n*\n* TAU (input) DOUBLE PRECISION\n* The value tau in the representation of H.\n*\n* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)\n* On entry, the m by n matrix C.\n* On exit, C is overwritten by the matrix H * C if SIDE = 'L',\n* or C * H if SIDE = 'R'.\n*\n* LDC (input) INTEGER\n* The leading dimension of the array C. LDA >= (1,M).\n*\n* WORK (workspace) DOUBLE PRECISION array, dimension\n* (N) if SIDE = 'L'\n* or (M) if SIDE = 'R'\n* WORK is not referenced if H has order < 11.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n c = NumRu::Lapack.dlarfx( side, v, tau, c, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 4 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
rblapack_side = argv[0];
rblapack_v = argv[1];
rblapack_tau = argv[2];
rblapack_c = argv[3];
if (argc == 4) {
} else if (rblapack_options != Qnil) {
} else {
}
side = StringValueCStr(rblapack_side)[0];
tau = NUM2DBL(rblapack_tau);
if (!NA_IsNArray(rblapack_v))
rb_raise(rb_eArgError, "v (2th argument) must be NArray");
if (NA_RANK(rblapack_v) != 1)
rb_raise(rb_eArgError, "rank of v (2th argument) must be %d", 1);
m = NA_SHAPE0(rblapack_v);
if (NA_TYPE(rblapack_v) != NA_DFLOAT)
rblapack_v = na_change_type(rblapack_v, NA_DFLOAT);
v = NA_PTR_TYPE(rblapack_v, doublereal*);
if (!NA_IsNArray(rblapack_c))
rb_raise(rb_eArgError, "c (4th argument) must be NArray");
if (NA_RANK(rblapack_c) != 2)
rb_raise(rb_eArgError, "rank of c (4th argument) must be %d", 2);
ldc = NA_SHAPE0(rblapack_c);
n = NA_SHAPE1(rblapack_c);
if (NA_TYPE(rblapack_c) != NA_DFLOAT)
rblapack_c = na_change_type(rblapack_c, NA_DFLOAT);
c = NA_PTR_TYPE(rblapack_c, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldc;
shape[1] = n;
rblapack_c_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
c_out__ = NA_PTR_TYPE(rblapack_c_out__, doublereal*);
MEMCPY(c_out__, c, doublereal, NA_TOTAL(rblapack_c));
rblapack_c = rblapack_c_out__;
c = c_out__;
work = ALLOC_N(doublereal, (lsame_(&side,"L") ? n : lsame_(&side,"R") ? m : 0));
dlarfx_(&side, &m, &n, v, &tau, c, &ldc, work);
free(work);
return rblapack_c;
}
void
init_lapack_dlarfx(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dlarfx", rblapack_dlarfx, -1);
}
|