1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
|
#include "rb_lapack.h"
extern VOID dlascl2_(integer* m, integer* n, doublereal* d, doublereal* x, integer* ldx);
static VALUE
rblapack_dlascl2(int argc, VALUE *argv, VALUE self){
#ifdef USEXBLAS
VALUE rblapack_d;
doublereal *d;
VALUE rblapack_x;
doublereal *x;
VALUE rblapack_x_out__;
doublereal *x_out__;
integer m;
integer ldx;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n x = NumRu::Lapack.dlascl2( d, x, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DLASCL2 ( M, N, D, X, LDX )\n\n* Purpose\n* =======\n*\n* DLASCL2 performs a diagonal scaling on a vector:\n* x <-- D * x\n* where the diagonal matrix D is stored as a vector.\n*\n* Eventually to be replaced by BLAS_dge_diag_scale in the new BLAS\n* standard.\n*\n\n* Arguments\n* =========\n*\n* M (input) INTEGER\n* The number of rows of D and X. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of D and X. N >= 0.\n*\n* D (input) DOUBLE PRECISION array, length M\n* Diagonal matrix D, stored as a vector of length M.\n*\n* X (input/output) DOUBLE PRECISION array, dimension (LDX,N)\n* On entry, the vector X to be scaled by D.\n* On exit, the scaled vector.\n*\n* LDX (input) INTEGER\n* The leading dimension of the vector X. LDX >= 0.\n*\n\n* =====================================================================\n*\n* .. Local Scalars ..\n INTEGER I, J\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n x = NumRu::Lapack.dlascl2( d, x, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 2 && argc != 2)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
rblapack_d = argv[0];
rblapack_x = argv[1];
if (argc == 2) {
} else if (rblapack_options != Qnil) {
} else {
}
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (1th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (1th argument) must be %d", 1);
m = NA_SHAPE0(rblapack_d);
if (NA_TYPE(rblapack_d) != NA_DFLOAT)
rblapack_d = na_change_type(rblapack_d, NA_DFLOAT);
d = NA_PTR_TYPE(rblapack_d, doublereal*);
if (!NA_IsNArray(rblapack_x))
rb_raise(rb_eArgError, "x (2th argument) must be NArray");
if (NA_RANK(rblapack_x) != 2)
rb_raise(rb_eArgError, "rank of x (2th argument) must be %d", 2);
ldx = NA_SHAPE0(rblapack_x);
n = NA_SHAPE1(rblapack_x);
if (NA_TYPE(rblapack_x) != NA_DFLOAT)
rblapack_x = na_change_type(rblapack_x, NA_DFLOAT);
x = NA_PTR_TYPE(rblapack_x, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldx;
shape[1] = n;
rblapack_x_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
x_out__ = NA_PTR_TYPE(rblapack_x_out__, doublereal*);
MEMCPY(x_out__, x, doublereal, NA_TOTAL(rblapack_x));
rblapack_x = rblapack_x_out__;
x = x_out__;
dlascl2_(&m, &n, d, x, &ldx);
return rblapack_x;
#else
return Qnil;
#endif
}
void
init_lapack_dlascl2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dlascl2", rblapack_dlascl2, -1);
}
|