1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
#include "rb_lapack.h"
extern VOID dlasd2_(integer* nl, integer* nr, integer* sqre, integer* k, doublereal* d, doublereal* z, doublereal* alpha, doublereal* beta, doublereal* u, integer* ldu, doublereal* vt, integer* ldvt, doublereal* dsigma, doublereal* u2, integer* ldu2, doublereal* vt2, integer* ldvt2, integer* idxp, integer* idx, integer* idxc, integer* idxq, integer* coltyp, integer* info);
static VALUE
rblapack_dlasd2(int argc, VALUE *argv, VALUE self){
VALUE rblapack_nl;
integer nl;
VALUE rblapack_nr;
integer nr;
VALUE rblapack_sqre;
integer sqre;
VALUE rblapack_d;
doublereal *d;
VALUE rblapack_alpha;
doublereal alpha;
VALUE rblapack_beta;
doublereal beta;
VALUE rblapack_u;
doublereal *u;
VALUE rblapack_vt;
doublereal *vt;
VALUE rblapack_idxq;
integer *idxq;
VALUE rblapack_k;
integer k;
VALUE rblapack_z;
doublereal *z;
VALUE rblapack_dsigma;
doublereal *dsigma;
VALUE rblapack_u2;
doublereal *u2;
VALUE rblapack_vt2;
doublereal *vt2;
VALUE rblapack_idxc;
integer *idxc;
VALUE rblapack_coltyp;
integer *coltyp;
VALUE rblapack_info;
integer info;
VALUE rblapack_d_out__;
doublereal *d_out__;
VALUE rblapack_u_out__;
doublereal *u_out__;
VALUE rblapack_vt_out__;
doublereal *vt_out__;
VALUE rblapack_idxq_out__;
integer *idxq_out__;
integer *idxp;
integer *idx;
integer n;
integer ldu;
integer ldvt;
integer m;
integer ldu2;
integer ldvt2;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n k, z, dsigma, u2, vt2, idxc, coltyp, info, d, u, vt, idxq = NumRu::Lapack.dlasd2( nl, nr, sqre, d, alpha, beta, u, vt, idxq, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT, LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX, IDXC, IDXQ, COLTYP, INFO )\n\n* Purpose\n* =======\n*\n* DLASD2 merges the two sets of singular values together into a single\n* sorted set. Then it tries to deflate the size of the problem.\n* There are two ways in which deflation can occur: when two or more\n* singular values are close together or if there is a tiny entry in the\n* Z vector. For each such occurrence the order of the related secular\n* equation problem is reduced by one.\n*\n* DLASD2 is called from DLASD1.\n*\n\n* Arguments\n* =========\n*\n* NL (input) INTEGER\n* The row dimension of the upper block. NL >= 1.\n*\n* NR (input) INTEGER\n* The row dimension of the lower block. NR >= 1.\n*\n* SQRE (input) INTEGER\n* = 0: the lower block is an NR-by-NR square matrix.\n* = 1: the lower block is an NR-by-(NR+1) rectangular matrix.\n*\n* The bidiagonal matrix has N = NL + NR + 1 rows and\n* M = N + SQRE >= N columns.\n*\n* K (output) INTEGER\n* Contains the dimension of the non-deflated matrix,\n* This is the order of the related secular equation. 1 <= K <=N.\n*\n* D (input/output) DOUBLE PRECISION array, dimension(N)\n* On entry D contains the singular values of the two submatrices\n* to be combined. On exit D contains the trailing (N-K) updated\n* singular values (those which were deflated) sorted into\n* increasing order.\n*\n* Z (output) DOUBLE PRECISION array, dimension(N)\n* On exit Z contains the updating row vector in the secular\n* equation.\n*\n* ALPHA (input) DOUBLE PRECISION\n* Contains the diagonal element associated with the added row.\n*\n* BETA (input) DOUBLE PRECISION\n* Contains the off-diagonal element associated with the added\n* row.\n*\n* U (input/output) DOUBLE PRECISION array, dimension(LDU,N)\n* On entry U contains the left singular vectors of two\n* submatrices in the two square blocks with corners at (1,1),\n* (NL, NL), and (NL+2, NL+2), (N,N).\n* On exit U contains the trailing (N-K) updated left singular\n* vectors (those which were deflated) in its last N-K columns.\n*\n* LDU (input) INTEGER\n* The leading dimension of the array U. LDU >= N.\n*\n* VT (input/output) DOUBLE PRECISION array, dimension(LDVT,M)\n* On entry VT' contains the right singular vectors of two\n* submatrices in the two square blocks with corners at (1,1),\n* (NL+1, NL+1), and (NL+2, NL+2), (M,M).\n* On exit VT' contains the trailing (N-K) updated right singular\n* vectors (those which were deflated) in its last N-K columns.\n* In case SQRE =1, the last row of VT spans the right null\n* space.\n*\n* LDVT (input) INTEGER\n* The leading dimension of the array VT. LDVT >= M.\n*\n* DSIGMA (output) DOUBLE PRECISION array, dimension (N)\n* Contains a copy of the diagonal elements (K-1 singular values\n* and one zero) in the secular equation.\n*\n* U2 (output) DOUBLE PRECISION array, dimension(LDU2,N)\n* Contains a copy of the first K-1 left singular vectors which\n* will be used by DLASD3 in a matrix multiply (DGEMM) to solve\n* for the new left singular vectors. U2 is arranged into four\n* blocks. The first block contains a column with 1 at NL+1 and\n* zero everywhere else; the second block contains non-zero\n* entries only at and above NL; the third contains non-zero\n* entries only below NL+1; and the fourth is dense.\n*\n* LDU2 (input) INTEGER\n* The leading dimension of the array U2. LDU2 >= N.\n*\n* VT2 (output) DOUBLE PRECISION array, dimension(LDVT2,N)\n* VT2' contains a copy of the first K right singular vectors\n* which will be used by DLASD3 in a matrix multiply (DGEMM) to\n* solve for the new right singular vectors. VT2 is arranged into\n* three blocks. The first block contains a row that corresponds\n* to the special 0 diagonal element in SIGMA; the second block\n* contains non-zeros only at and before NL +1; the third block\n* contains non-zeros only at and after NL +2.\n*\n* LDVT2 (input) INTEGER\n* The leading dimension of the array VT2. LDVT2 >= M.\n*\n* IDXP (workspace) INTEGER array dimension(N)\n* This will contain the permutation used to place deflated\n* values of D at the end of the array. On output IDXP(2:K)\n* points to the nondeflated D-values and IDXP(K+1:N)\n* points to the deflated singular values.\n*\n* IDX (workspace) INTEGER array dimension(N)\n* This will contain the permutation used to sort the contents of\n* D into ascending order.\n*\n* IDXC (output) INTEGER array dimension(N)\n* This will contain the permutation used to arrange the columns\n* of the deflated U matrix into three groups: the first group\n* contains non-zero entries only at and above NL, the second\n* contains non-zero entries only below NL+2, and the third is\n* dense.\n*\n* IDXQ (input/output) INTEGER array dimension(N)\n* This contains the permutation which separately sorts the two\n* sub-problems in D into ascending order. Note that entries in\n* the first hlaf of this permutation must first be moved one\n* position backward; and entries in the second half\n* must first have NL+1 added to their values.\n*\n* COLTYP (workspace/output) INTEGER array dimension(N)\n* As workspace, this will contain a label which will indicate\n* which of the following types a column in the U2 matrix or a\n* row in the VT2 matrix is:\n* 1 : non-zero in the upper half only\n* 2 : non-zero in the lower half only\n* 3 : dense\n* 4 : deflated\n*\n* On exit, it is an array of dimension 4, with COLTYP(I) being\n* the dimension of the I-th type columns.\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Ming Gu and Huan Ren, Computer Science Division, University of\n* California at Berkeley, USA\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n k, z, dsigma, u2, vt2, idxc, coltyp, info, d, u, vt, idxq = NumRu::Lapack.dlasd2( nl, nr, sqre, d, alpha, beta, u, vt, idxq, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 9 && argc != 9)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 9)", argc);
rblapack_nl = argv[0];
rblapack_nr = argv[1];
rblapack_sqre = argv[2];
rblapack_d = argv[3];
rblapack_alpha = argv[4];
rblapack_beta = argv[5];
rblapack_u = argv[6];
rblapack_vt = argv[7];
rblapack_idxq = argv[8];
if (argc == 9) {
} else if (rblapack_options != Qnil) {
} else {
}
nl = NUM2INT(rblapack_nl);
sqre = NUM2INT(rblapack_sqre);
alpha = NUM2DBL(rblapack_alpha);
if (!NA_IsNArray(rblapack_u))
rb_raise(rb_eArgError, "u (7th argument) must be NArray");
if (NA_RANK(rblapack_u) != 2)
rb_raise(rb_eArgError, "rank of u (7th argument) must be %d", 2);
ldu = NA_SHAPE0(rblapack_u);
n = NA_SHAPE1(rblapack_u);
if (NA_TYPE(rblapack_u) != NA_DFLOAT)
rblapack_u = na_change_type(rblapack_u, NA_DFLOAT);
u = NA_PTR_TYPE(rblapack_u, doublereal*);
if (!NA_IsNArray(rblapack_idxq))
rb_raise(rb_eArgError, "idxq (9th argument) must be NArray");
if (NA_RANK(rblapack_idxq) != 1)
rb_raise(rb_eArgError, "rank of idxq (9th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_idxq) != n)
rb_raise(rb_eRuntimeError, "shape 0 of idxq must be the same as shape 1 of u");
if (NA_TYPE(rblapack_idxq) != NA_LINT)
rblapack_idxq = na_change_type(rblapack_idxq, NA_LINT);
idxq = NA_PTR_TYPE(rblapack_idxq, integer*);
nr = NUM2INT(rblapack_nr);
beta = NUM2DBL(rblapack_beta);
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (4th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_d) != n)
rb_raise(rb_eRuntimeError, "shape 0 of d must be the same as shape 1 of u");
if (NA_TYPE(rblapack_d) != NA_DFLOAT)
rblapack_d = na_change_type(rblapack_d, NA_DFLOAT);
d = NA_PTR_TYPE(rblapack_d, doublereal*);
ldu2 = n;
if (!NA_IsNArray(rblapack_vt))
rb_raise(rb_eArgError, "vt (8th argument) must be NArray");
if (NA_RANK(rblapack_vt) != 2)
rb_raise(rb_eArgError, "rank of vt (8th argument) must be %d", 2);
ldvt = NA_SHAPE0(rblapack_vt);
m = NA_SHAPE1(rblapack_vt);
if (NA_TYPE(rblapack_vt) != NA_DFLOAT)
rblapack_vt = na_change_type(rblapack_vt, NA_DFLOAT);
vt = NA_PTR_TYPE(rblapack_vt, doublereal*);
ldvt2 = m;
{
na_shape_t shape[1];
shape[0] = n;
rblapack_z = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
z = NA_PTR_TYPE(rblapack_z, doublereal*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_dsigma = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
dsigma = NA_PTR_TYPE(rblapack_dsigma, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldu2;
shape[1] = n;
rblapack_u2 = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
u2 = NA_PTR_TYPE(rblapack_u2, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldvt2;
shape[1] = n;
rblapack_vt2 = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
vt2 = NA_PTR_TYPE(rblapack_vt2, doublereal*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_idxc = na_make_object(NA_LINT, 1, shape, cNArray);
}
idxc = NA_PTR_TYPE(rblapack_idxc, integer*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_coltyp = na_make_object(NA_LINT, 1, shape, cNArray);
}
coltyp = NA_PTR_TYPE(rblapack_coltyp, integer*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_d_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
d_out__ = NA_PTR_TYPE(rblapack_d_out__, doublereal*);
MEMCPY(d_out__, d, doublereal, NA_TOTAL(rblapack_d));
rblapack_d = rblapack_d_out__;
d = d_out__;
{
na_shape_t shape[2];
shape[0] = ldu;
shape[1] = n;
rblapack_u_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
u_out__ = NA_PTR_TYPE(rblapack_u_out__, doublereal*);
MEMCPY(u_out__, u, doublereal, NA_TOTAL(rblapack_u));
rblapack_u = rblapack_u_out__;
u = u_out__;
{
na_shape_t shape[2];
shape[0] = ldvt;
shape[1] = m;
rblapack_vt_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
vt_out__ = NA_PTR_TYPE(rblapack_vt_out__, doublereal*);
MEMCPY(vt_out__, vt, doublereal, NA_TOTAL(rblapack_vt));
rblapack_vt = rblapack_vt_out__;
vt = vt_out__;
{
na_shape_t shape[1];
shape[0] = n;
rblapack_idxq_out__ = na_make_object(NA_LINT, 1, shape, cNArray);
}
idxq_out__ = NA_PTR_TYPE(rblapack_idxq_out__, integer*);
MEMCPY(idxq_out__, idxq, integer, NA_TOTAL(rblapack_idxq));
rblapack_idxq = rblapack_idxq_out__;
idxq = idxq_out__;
idxp = ALLOC_N(integer, (n));
idx = ALLOC_N(integer, (n));
dlasd2_(&nl, &nr, &sqre, &k, d, z, &alpha, &beta, u, &ldu, vt, &ldvt, dsigma, u2, &ldu2, vt2, &ldvt2, idxp, idx, idxc, idxq, coltyp, &info);
free(idxp);
free(idx);
rblapack_k = INT2NUM(k);
rblapack_info = INT2NUM(info);
return rb_ary_new3(12, rblapack_k, rblapack_z, rblapack_dsigma, rblapack_u2, rblapack_vt2, rblapack_idxc, rblapack_coltyp, rblapack_info, rblapack_d, rblapack_u, rblapack_vt, rblapack_idxq);
}
void
init_lapack_dlasd2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dlasd2", rblapack_dlasd2, -1);
}
|