File: dlasd8.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (173 lines) | stat: -rw-r--r-- 9,534 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#include "rb_lapack.h"

extern VOID dlasd8_(integer* icompq, integer* k, doublereal* d, doublereal* z, doublereal* vf, doublereal* vl, doublereal* difl, doublereal* difr, integer* lddifr, doublereal* dsigma, doublereal* work, integer* info);


static VALUE
rblapack_dlasd8(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_icompq;
  integer icompq; 
  VALUE rblapack_z;
  doublereal *z; 
  VALUE rblapack_vf;
  doublereal *vf; 
  VALUE rblapack_vl;
  doublereal *vl; 
  VALUE rblapack_dsigma;
  doublereal *dsigma; 
  VALUE rblapack_d;
  doublereal *d; 
  VALUE rblapack_difl;
  doublereal *difl; 
  VALUE rblapack_difr;
  doublereal *difr; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_z_out__;
  doublereal *z_out__;
  VALUE rblapack_vf_out__;
  doublereal *vf_out__;
  VALUE rblapack_vl_out__;
  doublereal *vl_out__;
  VALUE rblapack_dsigma_out__;
  doublereal *dsigma_out__;
  doublereal *work;

  integer k;
  integer lddifr;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  d, difl, difr, info, z, vf, vl, dsigma = NumRu::Lapack.dlasd8( icompq, z, vf, vl, dsigma, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR, DSIGMA, WORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  DLASD8 finds the square roots of the roots of the secular equation,\n*  as defined by the values in DSIGMA and Z. It makes the appropriate\n*  calls to DLASD4, and stores, for each  element in D, the distance\n*  to its two nearest poles (elements in DSIGMA). It also updates\n*  the arrays VF and VL, the first and last components of all the\n*  right singular vectors of the original bidiagonal matrix.\n*\n*  DLASD8 is called from DLASD6.\n*\n\n*  Arguments\n*  =========\n*\n*  ICOMPQ  (input) INTEGER\n*          Specifies whether singular vectors are to be computed in\n*          factored form in the calling routine:\n*          = 0: Compute singular values only.\n*          = 1: Compute singular vectors in factored form as well.\n*\n*  K       (input) INTEGER\n*          The number of terms in the rational function to be solved\n*          by DLASD4.  K >= 1.\n*\n*  D       (output) DOUBLE PRECISION array, dimension ( K )\n*          On output, D contains the updated singular values.\n*\n*  Z       (input/output) DOUBLE PRECISION array, dimension ( K )\n*          On entry, the first K elements of this array contain the\n*          components of the deflation-adjusted updating row vector.\n*          On exit, Z is updated.\n*\n*  VF      (input/output) DOUBLE PRECISION array, dimension ( K )\n*          On entry, VF contains  information passed through DBEDE8.\n*          On exit, VF contains the first K components of the first\n*          components of all right singular vectors of the bidiagonal\n*          matrix.\n*\n*  VL      (input/output) DOUBLE PRECISION array, dimension ( K )\n*          On entry, VL contains  information passed through DBEDE8.\n*          On exit, VL contains the first K components of the last\n*          components of all right singular vectors of the bidiagonal\n*          matrix.\n*\n*  DIFL    (output) DOUBLE PRECISION array, dimension ( K )\n*          On exit, DIFL(I) = D(I) - DSIGMA(I).\n*\n*  DIFR    (output) DOUBLE PRECISION array,\n*                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and\n*                   dimension ( K ) if ICOMPQ = 0.\n*          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not\n*          defined and will not be referenced.\n*\n*          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the\n*          normalizing factors for the right singular vector matrix.\n*\n*  LDDIFR  (input) INTEGER\n*          The leading dimension of DIFR, must be at least K.\n*\n*  DSIGMA  (input/output) DOUBLE PRECISION array, dimension ( K )\n*          On entry, the first K elements of this array contain the old\n*          roots of the deflated updating problem.  These are the poles\n*          of the secular equation.\n*          On exit, the elements of DSIGMA may be very slightly altered\n*          in value.\n*\n*  WORK    (workspace) DOUBLE PRECISION array, dimension at least 3 * K\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit.\n*          < 0:  if INFO = -i, the i-th argument had an illegal value.\n*          > 0:  if INFO = 1, a singular value did not converge\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Ming Gu and Huan Ren, Computer Science Division, University of\n*     California at Berkeley, USA\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  d, difl, difr, info, z, vf, vl, dsigma = NumRu::Lapack.dlasd8( icompq, z, vf, vl, dsigma, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 5 && argc != 5)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
  rblapack_icompq = argv[0];
  rblapack_z = argv[1];
  rblapack_vf = argv[2];
  rblapack_vl = argv[3];
  rblapack_dsigma = argv[4];
  if (argc == 5) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  icompq = NUM2INT(rblapack_icompq);
  if (!NA_IsNArray(rblapack_vf))
    rb_raise(rb_eArgError, "vf (3th argument) must be NArray");
  if (NA_RANK(rblapack_vf) != 1)
    rb_raise(rb_eArgError, "rank of vf (3th argument) must be %d", 1);
  k = NA_SHAPE0(rblapack_vf);
  if (NA_TYPE(rblapack_vf) != NA_DFLOAT)
    rblapack_vf = na_change_type(rblapack_vf, NA_DFLOAT);
  vf = NA_PTR_TYPE(rblapack_vf, doublereal*);
  if (!NA_IsNArray(rblapack_dsigma))
    rb_raise(rb_eArgError, "dsigma (5th argument) must be NArray");
  if (NA_RANK(rblapack_dsigma) != 1)
    rb_raise(rb_eArgError, "rank of dsigma (5th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_dsigma) != k)
    rb_raise(rb_eRuntimeError, "shape 0 of dsigma must be the same as shape 0 of vf");
  if (NA_TYPE(rblapack_dsigma) != NA_DFLOAT)
    rblapack_dsigma = na_change_type(rblapack_dsigma, NA_DFLOAT);
  dsigma = NA_PTR_TYPE(rblapack_dsigma, doublereal*);
  if (!NA_IsNArray(rblapack_z))
    rb_raise(rb_eArgError, "z (2th argument) must be NArray");
  if (NA_RANK(rblapack_z) != 1)
    rb_raise(rb_eArgError, "rank of z (2th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_z) != k)
    rb_raise(rb_eRuntimeError, "shape 0 of z must be the same as shape 0 of vf");
  if (NA_TYPE(rblapack_z) != NA_DFLOAT)
    rblapack_z = na_change_type(rblapack_z, NA_DFLOAT);
  z = NA_PTR_TYPE(rblapack_z, doublereal*);
  if (!NA_IsNArray(rblapack_vl))
    rb_raise(rb_eArgError, "vl (4th argument) must be NArray");
  if (NA_RANK(rblapack_vl) != 1)
    rb_raise(rb_eArgError, "rank of vl (4th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_vl) != k)
    rb_raise(rb_eRuntimeError, "shape 0 of vl must be the same as shape 0 of vf");
  if (NA_TYPE(rblapack_vl) != NA_DFLOAT)
    rblapack_vl = na_change_type(rblapack_vl, NA_DFLOAT);
  vl = NA_PTR_TYPE(rblapack_vl, doublereal*);
  lddifr = k;
  {
    na_shape_t shape[1];
    shape[0] = k;
    rblapack_d = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  d = NA_PTR_TYPE(rblapack_d, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = k;
    rblapack_difl = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  difl = NA_PTR_TYPE(rblapack_difl, doublereal*);
  {
    na_shape_t shape[2];
    shape[0] = icompq == 1 ? lddifr : icompq == 0 ? k : 0;
    shape[1] = icompq == 1 ? 2 : 0;
    rblapack_difr = na_make_object(NA_DFLOAT, 2, shape, cNArray);
  }
  difr = NA_PTR_TYPE(rblapack_difr, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = k;
    rblapack_z_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  z_out__ = NA_PTR_TYPE(rblapack_z_out__, doublereal*);
  MEMCPY(z_out__, z, doublereal, NA_TOTAL(rblapack_z));
  rblapack_z = rblapack_z_out__;
  z = z_out__;
  {
    na_shape_t shape[1];
    shape[0] = k;
    rblapack_vf_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  vf_out__ = NA_PTR_TYPE(rblapack_vf_out__, doublereal*);
  MEMCPY(vf_out__, vf, doublereal, NA_TOTAL(rblapack_vf));
  rblapack_vf = rblapack_vf_out__;
  vf = vf_out__;
  {
    na_shape_t shape[1];
    shape[0] = k;
    rblapack_vl_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  vl_out__ = NA_PTR_TYPE(rblapack_vl_out__, doublereal*);
  MEMCPY(vl_out__, vl, doublereal, NA_TOTAL(rblapack_vl));
  rblapack_vl = rblapack_vl_out__;
  vl = vl_out__;
  {
    na_shape_t shape[1];
    shape[0] = k;
    rblapack_dsigma_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  dsigma_out__ = NA_PTR_TYPE(rblapack_dsigma_out__, doublereal*);
  MEMCPY(dsigma_out__, dsigma, doublereal, NA_TOTAL(rblapack_dsigma));
  rblapack_dsigma = rblapack_dsigma_out__;
  dsigma = dsigma_out__;
  work = ALLOC_N(doublereal, (3 * k));

  dlasd8_(&icompq, &k, d, z, vf, vl, difl, difr, &lddifr, dsigma, work, &info);

  free(work);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(8, rblapack_d, rblapack_difl, rblapack_difr, rblapack_info, rblapack_z, rblapack_vf, rblapack_vl, rblapack_dsigma);
}

void
init_lapack_dlasd8(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "dlasd8", rblapack_dlasd8, -1);
}