1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
|
#include "rb_lapack.h"
extern VOID dlasdt_(integer* n, integer* lvl, integer* nd, integer* inode, integer* ndiml, integer* ndimr, integer* msub);
static VALUE
rblapack_dlasdt(int argc, VALUE *argv, VALUE self){
VALUE rblapack_n;
integer n;
VALUE rblapack_msub;
integer msub;
VALUE rblapack_lvl;
integer lvl;
VALUE rblapack_nd;
integer nd;
VALUE rblapack_inode;
integer *inode;
VALUE rblapack_ndiml;
integer *ndiml;
VALUE rblapack_ndimr;
integer *ndimr;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n lvl, nd, inode, ndiml, ndimr = NumRu::Lapack.dlasdt( n, msub, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DLASDT( N, LVL, ND, INODE, NDIML, NDIMR, MSUB )\n\n* Purpose\n* =======\n*\n* DLASDT creates a tree of subproblems for bidiagonal divide and\n* conquer.\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* On entry, the number of diagonal elements of the\n* bidiagonal matrix.\n*\n* LVL (output) INTEGER\n* On exit, the number of levels on the computation tree.\n*\n* ND (output) INTEGER\n* On exit, the number of nodes on the tree.\n*\n* INODE (output) INTEGER array, dimension ( N )\n* On exit, centers of subproblems.\n*\n* NDIML (output) INTEGER array, dimension ( N )\n* On exit, row dimensions of left children.\n*\n* NDIMR (output) INTEGER array, dimension ( N )\n* On exit, row dimensions of right children.\n*\n* MSUB (input) INTEGER\n* On entry, the maximum row dimension each subproblem at the\n* bottom of the tree can be of.\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Ming Gu and Huan Ren, Computer Science Division, University of\n* California at Berkeley, USA\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n lvl, nd, inode, ndiml, ndimr = NumRu::Lapack.dlasdt( n, msub, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 2 && argc != 2)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
rblapack_n = argv[0];
rblapack_msub = argv[1];
if (argc == 2) {
} else if (rblapack_options != Qnil) {
} else {
}
n = NUM2INT(rblapack_n);
msub = NUM2INT(rblapack_msub);
{
na_shape_t shape[1];
shape[0] = MAX(1,n);
rblapack_inode = na_make_object(NA_LINT, 1, shape, cNArray);
}
inode = NA_PTR_TYPE(rblapack_inode, integer*);
{
na_shape_t shape[1];
shape[0] = MAX(1,n);
rblapack_ndiml = na_make_object(NA_LINT, 1, shape, cNArray);
}
ndiml = NA_PTR_TYPE(rblapack_ndiml, integer*);
{
na_shape_t shape[1];
shape[0] = MAX(1,n);
rblapack_ndimr = na_make_object(NA_LINT, 1, shape, cNArray);
}
ndimr = NA_PTR_TYPE(rblapack_ndimr, integer*);
dlasdt_(&n, &lvl, &nd, inode, ndiml, ndimr, &msub);
rblapack_lvl = INT2NUM(lvl);
rblapack_nd = INT2NUM(nd);
return rb_ary_new3(5, rblapack_lvl, rblapack_nd, rblapack_inode, rblapack_ndiml, rblapack_ndimr);
}
void
init_lapack_dlasdt(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dlasdt", rblapack_dlasdt, -1);
}
|