1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
#include "rb_lapack.h"
extern VOID dormr2_(char* side, char* trans, integer* m, integer* n, integer* k, doublereal* a, integer* lda, doublereal* tau, doublereal* c, integer* ldc, doublereal* work, integer* info);
static VALUE
rblapack_dormr2(int argc, VALUE *argv, VALUE self){
VALUE rblapack_side;
char side;
VALUE rblapack_trans;
char trans;
VALUE rblapack_a;
doublereal *a;
VALUE rblapack_tau;
doublereal *tau;
VALUE rblapack_c;
doublereal *c;
VALUE rblapack_info;
integer info;
VALUE rblapack_c_out__;
doublereal *c_out__;
doublereal *work;
integer lda;
integer m;
integer k;
integer ldc;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, c = NumRu::Lapack.dormr2( side, trans, a, tau, c, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DORMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO )\n\n* Purpose\n* =======\n*\n* DORMR2 overwrites the general real m by n matrix C with\n*\n* Q * C if SIDE = 'L' and TRANS = 'N', or\n*\n* Q'* C if SIDE = 'L' and TRANS = 'T', or\n*\n* C * Q if SIDE = 'R' and TRANS = 'N', or\n*\n* C * Q' if SIDE = 'R' and TRANS = 'T',\n*\n* where Q is a real orthogonal matrix defined as the product of k\n* elementary reflectors\n*\n* Q = H(1) H(2) . . . H(k)\n*\n* as returned by DGERQF. Q is of order m if SIDE = 'L' and of order n\n* if SIDE = 'R'.\n*\n\n* Arguments\n* =========\n*\n* SIDE (input) CHARACTER*1\n* = 'L': apply Q or Q' from the Left\n* = 'R': apply Q or Q' from the Right\n*\n* TRANS (input) CHARACTER*1\n* = 'N': apply Q (No transpose)\n* = 'T': apply Q' (Transpose)\n*\n* M (input) INTEGER\n* The number of rows of the matrix C. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrix C. N >= 0.\n*\n* K (input) INTEGER\n* The number of elementary reflectors whose product defines\n* the matrix Q.\n* If SIDE = 'L', M >= K >= 0;\n* if SIDE = 'R', N >= K >= 0.\n*\n* A (input) DOUBLE PRECISION array, dimension\n* (LDA,M) if SIDE = 'L',\n* (LDA,N) if SIDE = 'R'\n* The i-th row must contain the vector which defines the\n* elementary reflector H(i), for i = 1,2,...,k, as returned by\n* DGERQF in the last k rows of its array argument A.\n* A is modified by the routine but restored on exit.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,K).\n*\n* TAU (input) DOUBLE PRECISION array, dimension (K)\n* TAU(i) must contain the scalar factor of the elementary\n* reflector H(i), as returned by DGERQF.\n*\n* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)\n* On entry, the m by n matrix C.\n* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.\n*\n* LDC (input) INTEGER\n* The leading dimension of the array C. LDC >= max(1,M).\n*\n* WORK (workspace) DOUBLE PRECISION array, dimension\n* (N) if SIDE = 'L',\n* (M) if SIDE = 'R'\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, c = NumRu::Lapack.dormr2( side, trans, a, tau, c, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_side = argv[0];
rblapack_trans = argv[1];
rblapack_a = argv[2];
rblapack_tau = argv[3];
rblapack_c = argv[4];
if (argc == 5) {
} else if (rblapack_options != Qnil) {
} else {
}
side = StringValueCStr(rblapack_side)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (3th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
m = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_DFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
a = NA_PTR_TYPE(rblapack_a, doublereal*);
if (!NA_IsNArray(rblapack_c))
rb_raise(rb_eArgError, "c (5th argument) must be NArray");
if (NA_RANK(rblapack_c) != 2)
rb_raise(rb_eArgError, "rank of c (5th argument) must be %d", 2);
ldc = NA_SHAPE0(rblapack_c);
n = NA_SHAPE1(rblapack_c);
if (NA_TYPE(rblapack_c) != NA_DFLOAT)
rblapack_c = na_change_type(rblapack_c, NA_DFLOAT);
c = NA_PTR_TYPE(rblapack_c, doublereal*);
trans = StringValueCStr(rblapack_trans)[0];
if (!NA_IsNArray(rblapack_tau))
rb_raise(rb_eArgError, "tau (4th argument) must be NArray");
if (NA_RANK(rblapack_tau) != 1)
rb_raise(rb_eArgError, "rank of tau (4th argument) must be %d", 1);
k = NA_SHAPE0(rblapack_tau);
if (NA_TYPE(rblapack_tau) != NA_DFLOAT)
rblapack_tau = na_change_type(rblapack_tau, NA_DFLOAT);
tau = NA_PTR_TYPE(rblapack_tau, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldc;
shape[1] = n;
rblapack_c_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
c_out__ = NA_PTR_TYPE(rblapack_c_out__, doublereal*);
MEMCPY(c_out__, c, doublereal, NA_TOTAL(rblapack_c));
rblapack_c = rblapack_c_out__;
c = c_out__;
work = ALLOC_N(doublereal, (lsame_(&side,"L") ? n : lsame_(&side,"R") ? m : 0));
dormr2_(&side, &trans, &m, &n, &k, a, &lda, tau, c, &ldc, work, &info);
free(work);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_info, rblapack_c);
}
void
init_lapack_dormr2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dormr2", rblapack_dormr2, -1);
}
|