1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
|
#include "rb_lapack.h"
extern VOID dpbstf_(char* uplo, integer* n, integer* kd, doublereal* ab, integer* ldab, integer* info);
static VALUE
rblapack_dpbstf(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_kd;
integer kd;
VALUE rblapack_ab;
doublereal *ab;
VALUE rblapack_info;
integer info;
VALUE rblapack_ab_out__;
doublereal *ab_out__;
integer ldab;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, ab = NumRu::Lapack.dpbstf( uplo, kd, ab, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DPBSTF( UPLO, N, KD, AB, LDAB, INFO )\n\n* Purpose\n* =======\n*\n* DPBSTF computes a split Cholesky factorization of a real\n* symmetric positive definite band matrix A.\n*\n* This routine is designed to be used in conjunction with DSBGST.\n*\n* The factorization has the form A = S**T*S where S is a band matrix\n* of the same bandwidth as A and the following structure:\n*\n* S = ( U )\n* ( M L )\n*\n* where U is upper triangular of order m = (n+kd)/2, and L is lower\n* triangular of order n-m.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* KD (input) INTEGER\n* The number of superdiagonals of the matrix A if UPLO = 'U',\n* or the number of subdiagonals if UPLO = 'L'. KD >= 0.\n*\n* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)\n* On entry, the upper or lower triangle of the symmetric band\n* matrix A, stored in the first kd+1 rows of the array. The\n* j-th column of A is stored in the j-th column of the array AB\n* as follows:\n* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;\n* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).\n*\n* On exit, if INFO = 0, the factor S from the split Cholesky\n* factorization A = S**T*S. See Further Details.\n*\n* LDAB (input) INTEGER\n* The leading dimension of the array AB. LDAB >= KD+1.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, the factorization could not be completed,\n* because the updated element a(i,i) was negative; the\n* matrix A is not positive definite.\n*\n\n* Further Details\n* ===============\n*\n* The band storage scheme is illustrated by the following example, when\n* N = 7, KD = 2:\n*\n* S = ( s11 s12 s13 )\n* ( s22 s23 s24 )\n* ( s33 s34 )\n* ( s44 )\n* ( s53 s54 s55 )\n* ( s64 s65 s66 )\n* ( s75 s76 s77 )\n*\n* If UPLO = 'U', the array AB holds:\n*\n* on entry: on exit:\n*\n* * * a13 a24 a35 a46 a57 * * s13 s24 s53 s64 s75\n* * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54 s65 s76\n* a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77\n*\n* If UPLO = 'L', the array AB holds:\n*\n* on entry: on exit:\n*\n* a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77\n* a21 a32 a43 a54 a65 a76 * s12 s23 s34 s54 s65 s76 *\n* a31 a42 a53 a64 a64 * * s13 s24 s53 s64 s75 * *\n*\n* Array elements marked * are not used by the routine.\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, ab = NumRu::Lapack.dpbstf( uplo, kd, ab, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 3)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_uplo = argv[0];
rblapack_kd = argv[1];
rblapack_ab = argv[2];
if (argc == 3) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (3th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (3th argument) must be %d", 2);
ldab = NA_SHAPE0(rblapack_ab);
n = NA_SHAPE1(rblapack_ab);
if (NA_TYPE(rblapack_ab) != NA_DFLOAT)
rblapack_ab = na_change_type(rblapack_ab, NA_DFLOAT);
ab = NA_PTR_TYPE(rblapack_ab, doublereal*);
kd = NUM2INT(rblapack_kd);
{
na_shape_t shape[2];
shape[0] = ldab;
shape[1] = n;
rblapack_ab_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, doublereal*);
MEMCPY(ab_out__, ab, doublereal, NA_TOTAL(rblapack_ab));
rblapack_ab = rblapack_ab_out__;
ab = ab_out__;
dpbstf_(&uplo, &n, &kd, ab, &ldab, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_info, rblapack_ab);
}
void
init_lapack_dpbstf(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dpbstf", rblapack_dpbstf, -1);
}
|