1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
#include "rb_lapack.h"
extern VOID dsbev_(char* jobz, char* uplo, integer* n, integer* kd, doublereal* ab, integer* ldab, doublereal* w, doublereal* z, integer* ldz, doublereal* work, integer* info);
static VALUE
rblapack_dsbev(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobz;
char jobz;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_kd;
integer kd;
VALUE rblapack_ab;
doublereal *ab;
VALUE rblapack_w;
doublereal *w;
VALUE rblapack_z;
doublereal *z;
VALUE rblapack_info;
integer info;
VALUE rblapack_ab_out__;
doublereal *ab_out__;
doublereal *work;
integer ldab;
integer n;
integer ldz;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n w, z, info, ab = NumRu::Lapack.dsbev( jobz, uplo, kd, ab, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DSBEV( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, INFO )\n\n* Purpose\n* =======\n*\n* DSBEV computes all the eigenvalues and, optionally, eigenvectors of\n* a real symmetric band matrix A.\n*\n\n* Arguments\n* =========\n*\n* JOBZ (input) CHARACTER*1\n* = 'N': Compute eigenvalues only;\n* = 'V': Compute eigenvalues and eigenvectors.\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* KD (input) INTEGER\n* The number of superdiagonals of the matrix A if UPLO = 'U',\n* or the number of subdiagonals if UPLO = 'L'. KD >= 0.\n*\n* AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)\n* On entry, the upper or lower triangle of the symmetric band\n* matrix A, stored in the first KD+1 rows of the array. The\n* j-th column of A is stored in the j-th column of the array AB\n* as follows:\n* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;\n* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).\n*\n* On exit, AB is overwritten by values generated during the\n* reduction to tridiagonal form. If UPLO = 'U', the first\n* superdiagonal and the diagonal of the tridiagonal matrix T\n* are returned in rows KD and KD+1 of AB, and if UPLO = 'L',\n* the diagonal and first subdiagonal of T are returned in the\n* first two rows of AB.\n*\n* LDAB (input) INTEGER\n* The leading dimension of the array AB. LDAB >= KD + 1.\n*\n* W (output) DOUBLE PRECISION array, dimension (N)\n* If INFO = 0, the eigenvalues in ascending order.\n*\n* Z (output) DOUBLE PRECISION array, dimension (LDZ, N)\n* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal\n* eigenvectors of the matrix A, with the i-th column of Z\n* holding the eigenvector associated with W(i).\n* If JOBZ = 'N', then Z is not referenced.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1, and if\n* JOBZ = 'V', LDZ >= max(1,N).\n*\n* WORK (workspace) DOUBLE PRECISION array, dimension (max(1,3*N-2))\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, the algorithm failed to converge; i\n* off-diagonal elements of an intermediate tridiagonal\n* form did not converge to zero.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n w, z, info, ab = NumRu::Lapack.dsbev( jobz, uplo, kd, ab, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 4 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
rblapack_jobz = argv[0];
rblapack_uplo = argv[1];
rblapack_kd = argv[2];
rblapack_ab = argv[3];
if (argc == 4) {
} else if (rblapack_options != Qnil) {
} else {
}
jobz = StringValueCStr(rblapack_jobz)[0];
kd = NUM2INT(rblapack_kd);
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (4th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (4th argument) must be %d", 2);
ldab = NA_SHAPE0(rblapack_ab);
n = NA_SHAPE1(rblapack_ab);
if (NA_TYPE(rblapack_ab) != NA_DFLOAT)
rblapack_ab = na_change_type(rblapack_ab, NA_DFLOAT);
ab = NA_PTR_TYPE(rblapack_ab, doublereal*);
ldz = lsame_(&jobz,"V") ? MAX(1,n) : 1;
{
na_shape_t shape[1];
shape[0] = n;
rblapack_w = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
w = NA_PTR_TYPE(rblapack_w, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldz;
shape[1] = n;
rblapack_z = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
z = NA_PTR_TYPE(rblapack_z, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldab;
shape[1] = n;
rblapack_ab_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, doublereal*);
MEMCPY(ab_out__, ab, doublereal, NA_TOTAL(rblapack_ab));
rblapack_ab = rblapack_ab_out__;
ab = ab_out__;
work = ALLOC_N(doublereal, (MAX(1,3*n-2)));
dsbev_(&jobz, &uplo, &n, &kd, ab, &ldab, w, z, &ldz, work, &info);
free(work);
rblapack_info = INT2NUM(info);
return rb_ary_new3(4, rblapack_w, rblapack_z, rblapack_info, rblapack_ab);
}
void
init_lapack_dsbev(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dsbev", rblapack_dsbev, -1);
}
|