1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
#include "rb_lapack.h"
extern VOID dsbgvx_(char* jobz, char* range, char* uplo, integer* n, integer* ka, integer* kb, doublereal* ab, integer* ldab, doublereal* bb, integer* ldbb, doublereal* q, integer* ldq, doublereal* vl, doublereal* vu, integer* il, integer* iu, doublereal* abstol, integer* m, doublereal* w, doublereal* z, integer* ldz, doublereal* work, integer* iwork, integer* ifail, integer* info);
static VALUE
rblapack_dsbgvx(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobz;
char jobz;
VALUE rblapack_range;
char range;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_ka;
integer ka;
VALUE rblapack_kb;
integer kb;
VALUE rblapack_ab;
doublereal *ab;
VALUE rblapack_bb;
doublereal *bb;
VALUE rblapack_vl;
doublereal vl;
VALUE rblapack_vu;
doublereal vu;
VALUE rblapack_il;
integer il;
VALUE rblapack_iu;
integer iu;
VALUE rblapack_abstol;
doublereal abstol;
VALUE rblapack_q;
doublereal *q;
VALUE rblapack_m;
integer m;
VALUE rblapack_w;
doublereal *w;
VALUE rblapack_z;
doublereal *z;
VALUE rblapack_work;
doublereal *work;
VALUE rblapack_iwork;
integer *iwork;
VALUE rblapack_ifail;
integer *ifail;
VALUE rblapack_info;
integer info;
VALUE rblapack_ab_out__;
doublereal *ab_out__;
VALUE rblapack_bb_out__;
doublereal *bb_out__;
integer ldab;
integer n;
integer ldbb;
integer ldq;
integer ldz;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n q, m, w, z, work, iwork, ifail, info, ab, bb = NumRu::Lapack.dsbgvx( jobz, range, uplo, ka, kb, ab, bb, vl, vu, il, iu, abstol, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )\n\n* Purpose\n* =======\n*\n* DSBGVX computes selected eigenvalues, and optionally, eigenvectors\n* of a real generalized symmetric-definite banded eigenproblem, of\n* the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric\n* and banded, and B is also positive definite. Eigenvalues and\n* eigenvectors can be selected by specifying either all eigenvalues,\n* a range of values or a range of indices for the desired eigenvalues.\n*\n\n* Arguments\n* =========\n*\n* JOBZ (input) CHARACTER*1\n* = 'N': Compute eigenvalues only;\n* = 'V': Compute eigenvalues and eigenvectors.\n*\n* RANGE (input) CHARACTER*1\n* = 'A': all eigenvalues will be found.\n* = 'V': all eigenvalues in the half-open interval (VL,VU]\n* will be found.\n* = 'I': the IL-th through IU-th eigenvalues will be found.\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangles of A and B are stored;\n* = 'L': Lower triangles of A and B are stored.\n*\n* N (input) INTEGER\n* The order of the matrices A and B. N >= 0.\n*\n* KA (input) INTEGER\n* The number of superdiagonals of the matrix A if UPLO = 'U',\n* or the number of subdiagonals if UPLO = 'L'. KA >= 0.\n*\n* KB (input) INTEGER\n* The number of superdiagonals of the matrix B if UPLO = 'U',\n* or the number of subdiagonals if UPLO = 'L'. KB >= 0.\n*\n* AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)\n* On entry, the upper or lower triangle of the symmetric band\n* matrix A, stored in the first ka+1 rows of the array. The\n* j-th column of A is stored in the j-th column of the array AB\n* as follows:\n* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;\n* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).\n*\n* On exit, the contents of AB are destroyed.\n*\n* LDAB (input) INTEGER\n* The leading dimension of the array AB. LDAB >= KA+1.\n*\n* BB (input/output) DOUBLE PRECISION array, dimension (LDBB, N)\n* On entry, the upper or lower triangle of the symmetric band\n* matrix B, stored in the first kb+1 rows of the array. The\n* j-th column of B is stored in the j-th column of the array BB\n* as follows:\n* if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;\n* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).\n*\n* On exit, the factor S from the split Cholesky factorization\n* B = S**T*S, as returned by DPBSTF.\n*\n* LDBB (input) INTEGER\n* The leading dimension of the array BB. LDBB >= KB+1.\n*\n* Q (output) DOUBLE PRECISION array, dimension (LDQ, N)\n* If JOBZ = 'V', the n-by-n matrix used in the reduction of\n* A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,\n* and consequently C to tridiagonal form.\n* If JOBZ = 'N', the array Q is not referenced.\n*\n* LDQ (input) INTEGER\n* The leading dimension of the array Q. If JOBZ = 'N',\n* LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).\n*\n* VL (input) DOUBLE PRECISION\n* VU (input) DOUBLE PRECISION\n* If RANGE='V', the lower and upper bounds of the interval to\n* be searched for eigenvalues. VL < VU.\n* Not referenced if RANGE = 'A' or 'I'.\n*\n* IL (input) INTEGER\n* IU (input) INTEGER\n* If RANGE='I', the indices (in ascending order) of the\n* smallest and largest eigenvalues to be returned.\n* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.\n* Not referenced if RANGE = 'A' or 'V'.\n*\n* ABSTOL (input) DOUBLE PRECISION\n* The absolute error tolerance for the eigenvalues.\n* An approximate eigenvalue is accepted as converged\n* when it is determined to lie in an interval [a,b]\n* of width less than or equal to\n*\n* ABSTOL + EPS * max( |a|,|b| ) ,\n*\n* where EPS is the machine precision. If ABSTOL is less than\n* or equal to zero, then EPS*|T| will be used in its place,\n* where |T| is the 1-norm of the tridiagonal matrix obtained\n* by reducing A to tridiagonal form.\n*\n* Eigenvalues will be computed most accurately when ABSTOL is\n* set to twice the underflow threshold 2*DLAMCH('S'), not zero.\n* If this routine returns with INFO>0, indicating that some\n* eigenvectors did not converge, try setting ABSTOL to\n* 2*DLAMCH('S').\n*\n* M (output) INTEGER\n* The total number of eigenvalues found. 0 <= M <= N.\n* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.\n*\n* W (output) DOUBLE PRECISION array, dimension (N)\n* If INFO = 0, the eigenvalues in ascending order.\n*\n* Z (output) DOUBLE PRECISION array, dimension (LDZ, N)\n* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of\n* eigenvectors, with the i-th column of Z holding the\n* eigenvector associated with W(i). The eigenvectors are\n* normalized so Z**T*B*Z = I.\n* If JOBZ = 'N', then Z is not referenced.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1, and if\n* JOBZ = 'V', LDZ >= max(1,N).\n*\n* WORK (workspace/output) DOUBLE PRECISION array, dimension (7*N)\n*\n* IWORK (workspace/output) INTEGER array, dimension (5*N)\n*\n* IFAIL (output) INTEGER array, dimension (M)\n* If JOBZ = 'V', then if INFO = 0, the first M elements of\n* IFAIL are zero. If INFO > 0, then IFAIL contains the\n* indices of the eigenvalues that failed to converge.\n* If JOBZ = 'N', then IFAIL is not referenced.\n*\n* INFO (output) INTEGER\n* = 0 : successful exit\n* < 0 : if INFO = -i, the i-th argument had an illegal value\n* <= N: if INFO = i, then i eigenvectors failed to converge.\n* Their indices are stored in IFAIL.\n* > N : DPBSTF returned an error code; i.e.,\n* if INFO = N + i, for 1 <= i <= N, then the leading\n* minor of order i of B is not positive definite.\n* The factorization of B could not be completed and\n* no eigenvalues or eigenvectors were computed.\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n q, m, w, z, work, iwork, ifail, info, ab, bb = NumRu::Lapack.dsbgvx( jobz, range, uplo, ka, kb, ab, bb, vl, vu, il, iu, abstol, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 12 && argc != 12)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 12)", argc);
rblapack_jobz = argv[0];
rblapack_range = argv[1];
rblapack_uplo = argv[2];
rblapack_ka = argv[3];
rblapack_kb = argv[4];
rblapack_ab = argv[5];
rblapack_bb = argv[6];
rblapack_vl = argv[7];
rblapack_vu = argv[8];
rblapack_il = argv[9];
rblapack_iu = argv[10];
rblapack_abstol = argv[11];
if (argc == 12) {
} else if (rblapack_options != Qnil) {
} else {
}
jobz = StringValueCStr(rblapack_jobz)[0];
uplo = StringValueCStr(rblapack_uplo)[0];
kb = NUM2INT(rblapack_kb);
if (!NA_IsNArray(rblapack_bb))
rb_raise(rb_eArgError, "bb (7th argument) must be NArray");
if (NA_RANK(rblapack_bb) != 2)
rb_raise(rb_eArgError, "rank of bb (7th argument) must be %d", 2);
ldbb = NA_SHAPE0(rblapack_bb);
n = NA_SHAPE1(rblapack_bb);
if (NA_TYPE(rblapack_bb) != NA_DFLOAT)
rblapack_bb = na_change_type(rblapack_bb, NA_DFLOAT);
bb = NA_PTR_TYPE(rblapack_bb, doublereal*);
vu = NUM2DBL(rblapack_vu);
iu = NUM2INT(rblapack_iu);
range = StringValueCStr(rblapack_range)[0];
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (6th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (6th argument) must be %d", 2);
ldab = NA_SHAPE0(rblapack_ab);
if (NA_SHAPE1(rblapack_ab) != n)
rb_raise(rb_eRuntimeError, "shape 1 of ab must be the same as shape 1 of bb");
if (NA_TYPE(rblapack_ab) != NA_DFLOAT)
rblapack_ab = na_change_type(rblapack_ab, NA_DFLOAT);
ab = NA_PTR_TYPE(rblapack_ab, doublereal*);
il = NUM2INT(rblapack_il);
ldz = lsame_(&jobz,"V") ? MAX(1,n) : 1;
ldq = 1 ? jobz = 'n' : MAX(1,n) ? jobz = 'v' : 0;
ka = NUM2INT(rblapack_ka);
abstol = NUM2DBL(rblapack_abstol);
vl = NUM2DBL(rblapack_vl);
m = lsame_(&range,"A") ? n : lsame_(&range,"I") ? iu-il+1 : 0;
{
na_shape_t shape[2];
shape[0] = ldq;
shape[1] = n;
rblapack_q = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
q = NA_PTR_TYPE(rblapack_q, doublereal*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_w = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
w = NA_PTR_TYPE(rblapack_w, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldz;
shape[1] = n;
rblapack_z = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
z = NA_PTR_TYPE(rblapack_z, doublereal*);
{
na_shape_t shape[1];
shape[0] = 7*n;
rblapack_work = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, doublereal*);
{
na_shape_t shape[1];
shape[0] = 5*n;
rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
}
iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
{
na_shape_t shape[1];
shape[0] = m;
rblapack_ifail = na_make_object(NA_LINT, 1, shape, cNArray);
}
ifail = NA_PTR_TYPE(rblapack_ifail, integer*);
{
na_shape_t shape[2];
shape[0] = ldab;
shape[1] = n;
rblapack_ab_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, doublereal*);
MEMCPY(ab_out__, ab, doublereal, NA_TOTAL(rblapack_ab));
rblapack_ab = rblapack_ab_out__;
ab = ab_out__;
{
na_shape_t shape[2];
shape[0] = ldbb;
shape[1] = n;
rblapack_bb_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
bb_out__ = NA_PTR_TYPE(rblapack_bb_out__, doublereal*);
MEMCPY(bb_out__, bb, doublereal, NA_TOTAL(rblapack_bb));
rblapack_bb = rblapack_bb_out__;
bb = bb_out__;
dsbgvx_(&jobz, &range, &uplo, &n, &ka, &kb, ab, &ldab, bb, &ldbb, q, &ldq, &vl, &vu, &il, &iu, &abstol, &m, w, z, &ldz, work, iwork, ifail, &info);
rblapack_m = INT2NUM(m);
rblapack_info = INT2NUM(info);
return rb_ary_new3(10, rblapack_q, rblapack_m, rblapack_w, rblapack_z, rblapack_work, rblapack_iwork, rblapack_ifail, rblapack_info, rblapack_ab, rblapack_bb);
}
void
init_lapack_dsbgvx(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dsbgvx", rblapack_dsbgvx, -1);
}
|