1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
#include "rb_lapack.h"
extern VOID dspgv_(integer* itype, char* jobz, char* uplo, integer* n, doublereal* ap, doublereal* bp, doublereal* w, doublereal* z, integer* ldz, doublereal* work, integer* info);
static VALUE
rblapack_dspgv(int argc, VALUE *argv, VALUE self){
VALUE rblapack_itype;
integer itype;
VALUE rblapack_jobz;
char jobz;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_ap;
doublereal *ap;
VALUE rblapack_bp;
doublereal *bp;
VALUE rblapack_w;
doublereal *w;
VALUE rblapack_z;
doublereal *z;
VALUE rblapack_info;
integer info;
VALUE rblapack_ap_out__;
doublereal *ap_out__;
VALUE rblapack_bp_out__;
doublereal *bp_out__;
doublereal *work;
integer ldap;
integer n;
integer ldz;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n w, z, info, ap, bp = NumRu::Lapack.dspgv( itype, jobz, uplo, ap, bp, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, INFO )\n\n* Purpose\n* =======\n*\n* DSPGV computes all the eigenvalues and, optionally, the eigenvectors\n* of a real generalized symmetric-definite eigenproblem, of the form\n* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.\n* Here A and B are assumed to be symmetric, stored in packed format,\n* and B is also positive definite.\n*\n\n* Arguments\n* =========\n*\n* ITYPE (input) INTEGER\n* Specifies the problem type to be solved:\n* = 1: A*x = (lambda)*B*x\n* = 2: A*B*x = (lambda)*x\n* = 3: B*A*x = (lambda)*x\n*\n* JOBZ (input) CHARACTER*1\n* = 'N': Compute eigenvalues only;\n* = 'V': Compute eigenvalues and eigenvectors.\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangles of A and B are stored;\n* = 'L': Lower triangles of A and B are stored.\n*\n* N (input) INTEGER\n* The order of the matrices A and B. N >= 0.\n*\n* AP (input/output) DOUBLE PRECISION array, dimension\n* (N*(N+1)/2)\n* On entry, the upper or lower triangle of the symmetric matrix\n* A, packed columnwise in a linear array. The j-th column of A\n* is stored in the array AP as follows:\n* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.\n*\n* On exit, the contents of AP are destroyed.\n*\n* BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)\n* On entry, the upper or lower triangle of the symmetric matrix\n* B, packed columnwise in a linear array. The j-th column of B\n* is stored in the array BP as follows:\n* if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;\n* if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.\n*\n* On exit, the triangular factor U or L from the Cholesky\n* factorization B = U**T*U or B = L*L**T, in the same storage\n* format as B.\n*\n* W (output) DOUBLE PRECISION array, dimension (N)\n* If INFO = 0, the eigenvalues in ascending order.\n*\n* Z (output) DOUBLE PRECISION array, dimension (LDZ, N)\n* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of\n* eigenvectors. The eigenvectors are normalized as follows:\n* if ITYPE = 1 or 2, Z**T*B*Z = I;\n* if ITYPE = 3, Z**T*inv(B)*Z = I.\n* If JOBZ = 'N', then Z is not referenced.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1, and if\n* JOBZ = 'V', LDZ >= max(1,N).\n*\n* WORK (workspace) DOUBLE PRECISION array, dimension (3*N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: DPPTRF or DSPEV returned an error code:\n* <= N: if INFO = i, DSPEV failed to converge;\n* i off-diagonal elements of an intermediate\n* tridiagonal form did not converge to zero.\n* > N: if INFO = n + i, for 1 <= i <= n, then the leading\n* minor of order i of B is not positive definite.\n* The factorization of B could not be completed and\n* no eigenvalues or eigenvectors were computed.\n*\n\n* =====================================================================\n*\n* .. Local Scalars ..\n LOGICAL UPPER, WANTZ\n CHARACTER TRANS\n INTEGER J, NEIG\n* ..\n* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n* ..\n* .. External Subroutines ..\n EXTERNAL DPPTRF, DSPEV, DSPGST, DTPMV, DTPSV, XERBLA\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n w, z, info, ap, bp = NumRu::Lapack.dspgv( itype, jobz, uplo, ap, bp, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_itype = argv[0];
rblapack_jobz = argv[1];
rblapack_uplo = argv[2];
rblapack_ap = argv[3];
rblapack_bp = argv[4];
if (argc == 5) {
} else if (rblapack_options != Qnil) {
} else {
}
itype = NUM2INT(rblapack_itype);
uplo = StringValueCStr(rblapack_uplo)[0];
jobz = StringValueCStr(rblapack_jobz)[0];
if (!NA_IsNArray(rblapack_ap))
rb_raise(rb_eArgError, "ap (4th argument) must be NArray");
if (NA_RANK(rblapack_ap) != 1)
rb_raise(rb_eArgError, "rank of ap (4th argument) must be %d", 1);
ldap = NA_SHAPE0(rblapack_ap);
if (NA_TYPE(rblapack_ap) != NA_DFLOAT)
rblapack_ap = na_change_type(rblapack_ap, NA_DFLOAT);
ap = NA_PTR_TYPE(rblapack_ap, doublereal*);
n = ((int)sqrtf(ldap*8+1.0f)-1)/2;
if (!NA_IsNArray(rblapack_bp))
rb_raise(rb_eArgError, "bp (5th argument) must be NArray");
if (NA_RANK(rblapack_bp) != 1)
rb_raise(rb_eArgError, "rank of bp (5th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_bp) != (n*(n+1)/2))
rb_raise(rb_eRuntimeError, "shape 0 of bp must be %d", n*(n+1)/2);
if (NA_TYPE(rblapack_bp) != NA_DFLOAT)
rblapack_bp = na_change_type(rblapack_bp, NA_DFLOAT);
bp = NA_PTR_TYPE(rblapack_bp, doublereal*);
ldz = lsame_(&jobz,"V") ? MAX(1,n) : 1;
{
na_shape_t shape[1];
shape[0] = n;
rblapack_w = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
w = NA_PTR_TYPE(rblapack_w, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldz;
shape[1] = n;
rblapack_z = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
z = NA_PTR_TYPE(rblapack_z, doublereal*);
{
na_shape_t shape[1];
shape[0] = ldap;
rblapack_ap_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
ap_out__ = NA_PTR_TYPE(rblapack_ap_out__, doublereal*);
MEMCPY(ap_out__, ap, doublereal, NA_TOTAL(rblapack_ap));
rblapack_ap = rblapack_ap_out__;
ap = ap_out__;
{
na_shape_t shape[1];
shape[0] = n*(n+1)/2;
rblapack_bp_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
bp_out__ = NA_PTR_TYPE(rblapack_bp_out__, doublereal*);
MEMCPY(bp_out__, bp, doublereal, NA_TOTAL(rblapack_bp));
rblapack_bp = rblapack_bp_out__;
bp = bp_out__;
work = ALLOC_N(doublereal, (3*n));
dspgv_(&itype, &jobz, &uplo, &n, ap, bp, w, z, &ldz, work, &info);
free(work);
rblapack_info = INT2NUM(info);
return rb_ary_new3(5, rblapack_w, rblapack_z, rblapack_info, rblapack_ap, rblapack_bp);
}
void
init_lapack_dspgv(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dspgv", rblapack_dspgv, -1);
}
|