1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
|
#include "rb_lapack.h"
extern VOID dsptrd_(char* uplo, integer* n, doublereal* ap, doublereal* d, doublereal* e, doublereal* tau, integer* info);
static VALUE
rblapack_dsptrd(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_ap;
doublereal *ap;
VALUE rblapack_d;
doublereal *d;
VALUE rblapack_e;
doublereal *e;
VALUE rblapack_tau;
doublereal *tau;
VALUE rblapack_info;
integer info;
VALUE rblapack_ap_out__;
doublereal *ap_out__;
integer ldap;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n d, e, tau, info, ap = NumRu::Lapack.dsptrd( uplo, ap, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DSPTRD( UPLO, N, AP, D, E, TAU, INFO )\n\n* Purpose\n* =======\n*\n* DSPTRD reduces a real symmetric matrix A stored in packed form to\n* symmetric tridiagonal form T by an orthogonal similarity\n* transformation: Q**T * A * Q = T.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)\n* On entry, the upper or lower triangle of the symmetric matrix\n* A, packed columnwise in a linear array. The j-th column of A\n* is stored in the array AP as follows:\n* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.\n* On exit, if UPLO = 'U', the diagonal and first superdiagonal\n* of A are overwritten by the corresponding elements of the\n* tridiagonal matrix T, and the elements above the first\n* superdiagonal, with the array TAU, represent the orthogonal\n* matrix Q as a product of elementary reflectors; if UPLO\n* = 'L', the diagonal and first subdiagonal of A are over-\n* written by the corresponding elements of the tridiagonal\n* matrix T, and the elements below the first subdiagonal, with\n* the array TAU, represent the orthogonal matrix Q as a product\n* of elementary reflectors. See Further Details.\n*\n* D (output) DOUBLE PRECISION array, dimension (N)\n* The diagonal elements of the tridiagonal matrix T:\n* D(i) = A(i,i).\n*\n* E (output) DOUBLE PRECISION array, dimension (N-1)\n* The off-diagonal elements of the tridiagonal matrix T:\n* E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.\n*\n* TAU (output) DOUBLE PRECISION array, dimension (N-1)\n* The scalar factors of the elementary reflectors (see Further\n* Details).\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* Further Details\n* ===============\n*\n* If UPLO = 'U', the matrix Q is represented as a product of elementary\n* reflectors\n*\n* Q = H(n-1) . . . H(2) H(1).\n*\n* Each H(i) has the form\n*\n* H(i) = I - tau * v * v'\n*\n* where tau is a real scalar, and v is a real vector with\n* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,\n* overwriting A(1:i-1,i+1), and tau is stored in TAU(i).\n*\n* If UPLO = 'L', the matrix Q is represented as a product of elementary\n* reflectors\n*\n* Q = H(1) H(2) . . . H(n-1).\n*\n* Each H(i) has the form\n*\n* H(i) = I - tau * v * v'\n*\n* where tau is a real scalar, and v is a real vector with\n* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,\n* overwriting A(i+2:n,i), and tau is stored in TAU(i).\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n d, e, tau, info, ap = NumRu::Lapack.dsptrd( uplo, ap, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 2 && argc != 2)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
rblapack_uplo = argv[0];
rblapack_ap = argv[1];
if (argc == 2) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_ap))
rb_raise(rb_eArgError, "ap (2th argument) must be NArray");
if (NA_RANK(rblapack_ap) != 1)
rb_raise(rb_eArgError, "rank of ap (2th argument) must be %d", 1);
ldap = NA_SHAPE0(rblapack_ap);
if (NA_TYPE(rblapack_ap) != NA_DFLOAT)
rblapack_ap = na_change_type(rblapack_ap, NA_DFLOAT);
ap = NA_PTR_TYPE(rblapack_ap, doublereal*);
n = ((int)sqrtf(ldap*8+1.0f)-1)/2;
{
na_shape_t shape[1];
shape[0] = n;
rblapack_d = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
d = NA_PTR_TYPE(rblapack_d, doublereal*);
{
na_shape_t shape[1];
shape[0] = n-1;
rblapack_e = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
e = NA_PTR_TYPE(rblapack_e, doublereal*);
{
na_shape_t shape[1];
shape[0] = n-1;
rblapack_tau = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
tau = NA_PTR_TYPE(rblapack_tau, doublereal*);
{
na_shape_t shape[1];
shape[0] = ldap;
rblapack_ap_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
ap_out__ = NA_PTR_TYPE(rblapack_ap_out__, doublereal*);
MEMCPY(ap_out__, ap, doublereal, NA_TOTAL(rblapack_ap));
rblapack_ap = rblapack_ap_out__;
ap = ap_out__;
dsptrd_(&uplo, &n, ap, d, e, tau, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(5, rblapack_d, rblapack_e, rblapack_tau, rblapack_info, rblapack_ap);
}
void
init_lapack_dsptrd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dsptrd", rblapack_dsptrd, -1);
}
|