1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
#include "rb_lapack.h"
extern VOID dstevd_(char* jobz, integer* n, doublereal* d, doublereal* e, doublereal* z, integer* ldz, doublereal* work, integer* lwork, integer* iwork, integer* liwork, integer* info);
static VALUE
rblapack_dstevd(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobz;
char jobz;
VALUE rblapack_d;
doublereal *d;
VALUE rblapack_e;
doublereal *e;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_liwork;
integer liwork;
VALUE rblapack_z;
doublereal *z;
VALUE rblapack_work;
doublereal *work;
VALUE rblapack_iwork;
integer *iwork;
VALUE rblapack_info;
integer info;
VALUE rblapack_d_out__;
doublereal *d_out__;
VALUE rblapack_e_out__;
doublereal *e_out__;
integer n;
integer ldz;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n z, work, iwork, info, d, e = NumRu::Lapack.dstevd( jobz, d, e, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )\n\n* Purpose\n* =======\n*\n* DSTEVD computes all eigenvalues and, optionally, eigenvectors of a\n* real symmetric tridiagonal matrix. If eigenvectors are desired, it\n* uses a divide and conquer algorithm.\n*\n* The divide and conquer algorithm makes very mild assumptions about\n* floating point arithmetic. It will work on machines with a guard\n* digit in add/subtract, or on those binary machines without guard\n* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or\n* Cray-2. It could conceivably fail on hexadecimal or decimal machines\n* without guard digits, but we know of none.\n*\n\n* Arguments\n* =========\n*\n* JOBZ (input) CHARACTER*1\n* = 'N': Compute eigenvalues only;\n* = 'V': Compute eigenvalues and eigenvectors.\n*\n* N (input) INTEGER\n* The order of the matrix. N >= 0.\n*\n* D (input/output) DOUBLE PRECISION array, dimension (N)\n* On entry, the n diagonal elements of the tridiagonal matrix\n* A.\n* On exit, if INFO = 0, the eigenvalues in ascending order.\n*\n* E (input/output) DOUBLE PRECISION array, dimension (N-1)\n* On entry, the (n-1) subdiagonal elements of the tridiagonal\n* matrix A, stored in elements 1 to N-1 of E.\n* On exit, the contents of E are destroyed.\n*\n* Z (output) DOUBLE PRECISION array, dimension (LDZ, N)\n* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal\n* eigenvectors of the matrix A, with the i-th column of Z\n* holding the eigenvector associated with D(i).\n* If JOBZ = 'N', then Z is not referenced.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1, and if\n* JOBZ = 'V', LDZ >= max(1,N).\n*\n* WORK (workspace/output) DOUBLE PRECISION array,\n* dimension (LWORK)\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK.\n* If JOBZ = 'N' or N <= 1 then LWORK must be at least 1.\n* If JOBZ = 'V' and N > 1 then LWORK must be at least\n* ( 1 + 4*N + N**2 ).\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal sizes of the WORK and IWORK\n* arrays, returns these values as the first entries of the WORK\n* and IWORK arrays, and no error message related to LWORK or\n* LIWORK is issued by XERBLA.\n*\n* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.\n*\n* LIWORK (input) INTEGER\n* The dimension of the array IWORK.\n* If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1.\n* If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N.\n*\n* If LIWORK = -1, then a workspace query is assumed; the\n* routine only calculates the optimal sizes of the WORK and\n* IWORK arrays, returns these values as the first entries of\n* the WORK and IWORK arrays, and no error message related to\n* LWORK or LIWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, the algorithm failed to converge; i\n* off-diagonal elements of E did not converge to zero.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n z, work, iwork, info, d, e = NumRu::Lapack.dstevd( jobz, d, e, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_jobz = argv[0];
rblapack_d = argv[1];
rblapack_e = argv[2];
if (argc == 5) {
rblapack_lwork = argv[3];
rblapack_liwork = argv[4];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
rblapack_liwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("liwork")));
} else {
rblapack_lwork = Qnil;
rblapack_liwork = Qnil;
}
jobz = StringValueCStr(rblapack_jobz)[0];
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (2th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (2th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_d);
if (NA_TYPE(rblapack_d) != NA_DFLOAT)
rblapack_d = na_change_type(rblapack_d, NA_DFLOAT);
d = NA_PTR_TYPE(rblapack_d, doublereal*);
if (rblapack_lwork == Qnil)
lwork = (lsame_(&jobz,"N")||n<=1) ? 1 : (lsame_(&jobz,"V")&&n>1) ? 1+4*n+n*n : 0;
else {
lwork = NUM2INT(rblapack_lwork);
}
ldz = lsame_(&jobz,"V") ? MAX(1,n) : 1;
if (!NA_IsNArray(rblapack_e))
rb_raise(rb_eArgError, "e (3th argument) must be NArray");
if (NA_RANK(rblapack_e) != 1)
rb_raise(rb_eArgError, "rank of e (3th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_e) != (n-1))
rb_raise(rb_eRuntimeError, "shape 0 of e must be %d", n-1);
if (NA_TYPE(rblapack_e) != NA_DFLOAT)
rblapack_e = na_change_type(rblapack_e, NA_DFLOAT);
e = NA_PTR_TYPE(rblapack_e, doublereal*);
if (rblapack_liwork == Qnil)
liwork = (lsame_(&jobz,"N")||n<=1) ? 1 : (lsame_(&jobz,"V")&&n>1) ? 3+5*n : 0;
else {
liwork = NUM2INT(rblapack_liwork);
}
{
na_shape_t shape[2];
shape[0] = ldz;
shape[1] = n;
rblapack_z = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
z = NA_PTR_TYPE(rblapack_z, doublereal*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, doublereal*);
{
na_shape_t shape[1];
shape[0] = MAX(1,liwork);
rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
}
iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_d_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
d_out__ = NA_PTR_TYPE(rblapack_d_out__, doublereal*);
MEMCPY(d_out__, d, doublereal, NA_TOTAL(rblapack_d));
rblapack_d = rblapack_d_out__;
d = d_out__;
{
na_shape_t shape[1];
shape[0] = n-1;
rblapack_e_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
e_out__ = NA_PTR_TYPE(rblapack_e_out__, doublereal*);
MEMCPY(e_out__, e, doublereal, NA_TOTAL(rblapack_e));
rblapack_e = rblapack_e_out__;
e = e_out__;
dstevd_(&jobz, &n, d, e, z, &ldz, work, &lwork, iwork, &liwork, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(6, rblapack_z, rblapack_work, rblapack_iwork, rblapack_info, rblapack_d, rblapack_e);
}
void
init_lapack_dstevd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dstevd", rblapack_dstevd, -1);
}
|