File: dstevr.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (188 lines) | stat: -rw-r--r-- 14,647 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#include "rb_lapack.h"

extern VOID dstevr_(char* jobz, char* range, integer* n, doublereal* d, doublereal* e, doublereal* vl, doublereal* vu, integer* il, integer* iu, doublereal* abstol, integer* m, doublereal* w, doublereal* z, integer* ldz, integer* isuppz, doublereal* work, integer* lwork, integer* iwork, integer* liwork, integer* info);


static VALUE
rblapack_dstevr(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_jobz;
  char jobz; 
  VALUE rblapack_range;
  char range; 
  VALUE rblapack_d;
  doublereal *d; 
  VALUE rblapack_e;
  doublereal *e; 
  VALUE rblapack_vl;
  doublereal vl; 
  VALUE rblapack_vu;
  doublereal vu; 
  VALUE rblapack_il;
  integer il; 
  VALUE rblapack_iu;
  integer iu; 
  VALUE rblapack_abstol;
  doublereal abstol; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_liwork;
  integer liwork; 
  VALUE rblapack_m;
  integer m; 
  VALUE rblapack_w;
  doublereal *w; 
  VALUE rblapack_z;
  doublereal *z; 
  VALUE rblapack_isuppz;
  integer *isuppz; 
  VALUE rblapack_work;
  doublereal *work; 
  VALUE rblapack_iwork;
  integer *iwork; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_d_out__;
  doublereal *d_out__;
  VALUE rblapack_e_out__;
  doublereal *e_out__;

  integer n;
  integer ldz;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  m, w, z, isuppz, work, iwork, info, d, e = NumRu::Lapack.dstevr( jobz, range, d, e, vl, vu, il, iu, abstol, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  DSTEVR computes selected eigenvalues and, optionally, eigenvectors\n*  of a real symmetric tridiagonal matrix T.  Eigenvalues and\n*  eigenvectors can be selected by specifying either a range of values\n*  or a range of indices for the desired eigenvalues.\n*\n*  Whenever possible, DSTEVR calls DSTEMR to compute the\n*  eigenspectrum using Relatively Robust Representations.  DSTEMR\n*  computes eigenvalues by the dqds algorithm, while orthogonal\n*  eigenvectors are computed from various \"good\" L D L^T representations\n*  (also known as Relatively Robust Representations). Gram-Schmidt\n*  orthogonalization is avoided as far as possible. More specifically,\n*  the various steps of the algorithm are as follows. For the i-th\n*  unreduced block of T,\n*     (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T\n*          is a relatively robust representation,\n*     (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high\n*         relative accuracy by the dqds algorithm,\n*     (c) If there is a cluster of close eigenvalues, \"choose\" sigma_i\n*         close to the cluster, and go to step (a),\n*     (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,\n*         compute the corresponding eigenvector by forming a\n*         rank-revealing twisted factorization.\n*  The desired accuracy of the output can be specified by the input\n*  parameter ABSTOL.\n*\n*  For more details, see \"A new O(n^2) algorithm for the symmetric\n*  tridiagonal eigenvalue/eigenvector problem\", by Inderjit Dhillon,\n*  Computer Science Division Technical Report No. UCB//CSD-97-971,\n*  UC Berkeley, May 1997.\n*\n*\n*  Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested\n*  on machines which conform to the ieee-754 floating point standard.\n*  DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and\n*  when partial spectrum requests are made.\n*\n*  Normal execution of DSTEMR may create NaNs and infinities and\n*  hence may abort due to a floating point exception in environments\n*  which do not handle NaNs and infinities in the ieee standard default\n*  manner.\n*\n\n*  Arguments\n*  =========\n*\n*  JOBZ    (input) CHARACTER*1\n*          = 'N':  Compute eigenvalues only;\n*          = 'V':  Compute eigenvalues and eigenvectors.\n*\n*  RANGE   (input) CHARACTER*1\n*          = 'A': all eigenvalues will be found.\n*          = 'V': all eigenvalues in the half-open interval (VL,VU]\n*                 will be found.\n*          = 'I': the IL-th through IU-th eigenvalues will be found.\n********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and\n********** DSTEIN are called\n*\n*  N       (input) INTEGER\n*          The order of the matrix.  N >= 0.\n*\n*  D       (input/output) DOUBLE PRECISION array, dimension (N)\n*          On entry, the n diagonal elements of the tridiagonal matrix\n*          A.\n*          On exit, D may be multiplied by a constant factor chosen\n*          to avoid over/underflow in computing the eigenvalues.\n*\n*  E       (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))\n*          On entry, the (n-1) subdiagonal elements of the tridiagonal\n*          matrix A in elements 1 to N-1 of E.\n*          On exit, E may be multiplied by a constant factor chosen\n*          to avoid over/underflow in computing the eigenvalues.\n*\n*  VL      (input) DOUBLE PRECISION\n*  VU      (input) DOUBLE PRECISION\n*          If RANGE='V', the lower and upper bounds of the interval to\n*          be searched for eigenvalues. VL < VU.\n*          Not referenced if RANGE = 'A' or 'I'.\n*\n*  IL      (input) INTEGER\n*  IU      (input) INTEGER\n*          If RANGE='I', the indices (in ascending order) of the\n*          smallest and largest eigenvalues to be returned.\n*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.\n*          Not referenced if RANGE = 'A' or 'V'.\n*\n*  ABSTOL  (input) DOUBLE PRECISION\n*          The absolute error tolerance for the eigenvalues.\n*          An approximate eigenvalue is accepted as converged\n*          when it is determined to lie in an interval [a,b]\n*          of width less than or equal to\n*\n*                  ABSTOL + EPS *   max( |a|,|b| ) ,\n*\n*          where EPS is the machine precision.  If ABSTOL is less than\n*          or equal to zero, then  EPS*|T|  will be used in its place,\n*          where |T| is the 1-norm of the tridiagonal matrix obtained\n*          by reducing A to tridiagonal form.\n*\n*          See \"Computing Small Singular Values of Bidiagonal Matrices\n*          with Guaranteed High Relative Accuracy,\" by Demmel and\n*          Kahan, LAPACK Working Note #3.\n*\n*          If high relative accuracy is important, set ABSTOL to\n*          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that\n*          eigenvalues are computed to high relative accuracy when\n*          possible in future releases.  The current code does not\n*          make any guarantees about high relative accuracy, but\n*          future releases will. See J. Barlow and J. Demmel,\n*          \"Computing Accurate Eigensystems of Scaled Diagonally\n*          Dominant Matrices\", LAPACK Working Note #7, for a discussion\n*          of which matrices define their eigenvalues to high relative\n*          accuracy.\n*\n*  M       (output) INTEGER\n*          The total number of eigenvalues found.  0 <= M <= N.\n*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.\n*\n*  W       (output) DOUBLE PRECISION array, dimension (N)\n*          The first M elements contain the selected eigenvalues in\n*          ascending order.\n*\n*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )\n*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z\n*          contain the orthonormal eigenvectors of the matrix A\n*          corresponding to the selected eigenvalues, with the i-th\n*          column of Z holding the eigenvector associated with W(i).\n*          Note: the user must ensure that at least max(1,M) columns are\n*          supplied in the array Z; if RANGE = 'V', the exact value of M\n*          is not known in advance and an upper bound must be used.\n*\n*  LDZ     (input) INTEGER\n*          The leading dimension of the array Z.  LDZ >= 1, and if\n*          JOBZ = 'V', LDZ >= max(1,N).\n*\n*  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )\n*          The support of the eigenvectors in Z, i.e., the indices\n*          indicating the nonzero elements in Z. The i-th eigenvector\n*          is nonzero only in elements ISUPPZ( 2*i-1 ) through\n*          ISUPPZ( 2*i ).\n********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1\n*\n*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))\n*          On exit, if INFO = 0, WORK(1) returns the optimal (and\n*          minimal) LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The dimension of the array WORK.  LWORK >= max(1,20*N).\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal sizes of the WORK and IWORK\n*          arrays, returns these values as the first entries of the WORK\n*          and IWORK arrays, and no error message related to LWORK or\n*          LIWORK is issued by XERBLA.\n*\n*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n*          On exit, if INFO = 0, IWORK(1) returns the optimal (and\n*          minimal) LIWORK.\n*\n*  LIWORK  (input) INTEGER\n*          The dimension of the array IWORK.  LIWORK >= max(1,10*N).\n*\n*          If LIWORK = -1, then a workspace query is assumed; the\n*          routine only calculates the optimal sizes of the WORK and\n*          IWORK arrays, returns these values as the first entries of\n*          the WORK and IWORK arrays, and no error message related to\n*          LWORK or LIWORK is issued by XERBLA.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*          > 0:  Internal error\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Inderjit Dhillon, IBM Almaden, USA\n*     Osni Marques, LBNL/NERSC, USA\n*     Ken Stanley, Computer Science Division, University of\n*       California at Berkeley, USA\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  m, w, z, isuppz, work, iwork, info, d, e = NumRu::Lapack.dstevr( jobz, range, d, e, vl, vu, il, iu, abstol, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 9 && argc != 11)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 9)", argc);
  rblapack_jobz = argv[0];
  rblapack_range = argv[1];
  rblapack_d = argv[2];
  rblapack_e = argv[3];
  rblapack_vl = argv[4];
  rblapack_vu = argv[5];
  rblapack_il = argv[6];
  rblapack_iu = argv[7];
  rblapack_abstol = argv[8];
  if (argc == 11) {
    rblapack_lwork = argv[9];
    rblapack_liwork = argv[10];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
    rblapack_liwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("liwork")));
  } else {
    rblapack_lwork = Qnil;
    rblapack_liwork = Qnil;
  }

  jobz = StringValueCStr(rblapack_jobz)[0];
  if (!NA_IsNArray(rblapack_d))
    rb_raise(rb_eArgError, "d (3th argument) must be NArray");
  if (NA_RANK(rblapack_d) != 1)
    rb_raise(rb_eArgError, "rank of d (3th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_d);
  if (NA_TYPE(rblapack_d) != NA_DFLOAT)
    rblapack_d = na_change_type(rblapack_d, NA_DFLOAT);
  d = NA_PTR_TYPE(rblapack_d, doublereal*);
  vl = NUM2DBL(rblapack_vl);
  il = NUM2INT(rblapack_il);
  abstol = NUM2DBL(rblapack_abstol);
  if (rblapack_liwork == Qnil)
    liwork = 10*n;
  else {
    liwork = NUM2INT(rblapack_liwork);
  }
  range = StringValueCStr(rblapack_range)[0];
  vu = NUM2DBL(rblapack_vu);
  if (rblapack_lwork == Qnil)
    lwork = 20*n;
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  if (!NA_IsNArray(rblapack_e))
    rb_raise(rb_eArgError, "e (4th argument) must be NArray");
  if (NA_RANK(rblapack_e) != 1)
    rb_raise(rb_eArgError, "rank of e (4th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_e) != (MAX(1,n-1)))
    rb_raise(rb_eRuntimeError, "shape 0 of e must be %d", MAX(1,n-1));
  if (NA_TYPE(rblapack_e) != NA_DFLOAT)
    rblapack_e = na_change_type(rblapack_e, NA_DFLOAT);
  e = NA_PTR_TYPE(rblapack_e, doublereal*);
  ldz = lsame_(&jobz,"V") ? MAX(1,n) : 1;
  iu = NUM2INT(rblapack_iu);
  m = lsame_(&range,"I") ? iu-il+1 : n;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_w = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  w = NA_PTR_TYPE(rblapack_w, doublereal*);
  {
    na_shape_t shape[2];
    shape[0] = ldz;
    shape[1] = MAX(1,m);
    rblapack_z = na_make_object(NA_DFLOAT, 2, shape, cNArray);
  }
  z = NA_PTR_TYPE(rblapack_z, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = 2*MAX(1,m);
    rblapack_isuppz = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  isuppz = NA_PTR_TYPE(rblapack_isuppz, integer*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,liwork);
    rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_d_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  d_out__ = NA_PTR_TYPE(rblapack_d_out__, doublereal*);
  MEMCPY(d_out__, d, doublereal, NA_TOTAL(rblapack_d));
  rblapack_d = rblapack_d_out__;
  d = d_out__;
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,n-1);
    rblapack_e_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  e_out__ = NA_PTR_TYPE(rblapack_e_out__, doublereal*);
  MEMCPY(e_out__, e, doublereal, NA_TOTAL(rblapack_e));
  rblapack_e = rblapack_e_out__;
  e = e_out__;

  dstevr_(&jobz, &range, &n, d, e, &vl, &vu, &il, &iu, &abstol, &m, w, z, &ldz, isuppz, work, &lwork, iwork, &liwork, &info);

  rblapack_m = INT2NUM(m);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(9, rblapack_m, rblapack_w, rblapack_z, rblapack_isuppz, rblapack_work, rblapack_iwork, rblapack_info, rblapack_d, rblapack_e);
}

void
init_lapack_dstevr(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "dstevr", rblapack_dstevr, -1);
}