File: dsytri2x.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (96 lines) | stat: -rw-r--r-- 5,027 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#include "rb_lapack.h"

extern VOID dsytri2x_(char* uplo, integer* n, doublereal* a, integer* lda, integer* ipiv, doublereal* work, integer* nb, integer* info);


static VALUE
rblapack_dsytri2x(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_a;
  doublereal *a; 
  VALUE rblapack_ipiv;
  integer *ipiv; 
  VALUE rblapack_nb;
  integer nb; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  doublereal *a_out__;
  doublereal *work;

  integer lda;
  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, a = NumRu::Lapack.dsytri2x( uplo, a, ipiv, nb, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE DSYTRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO )\n\n*  Purpose\n*  =======\n*\n*  DSYTRI2X computes the inverse of a real symmetric indefinite matrix\n*  A using the factorization A = U*D*U**T or A = L*D*L**T computed by\n*  DSYTRF.\n*\n\n*  Arguments\n*  =========\n*\n*  UPLO    (input) CHARACTER*1\n*          Specifies whether the details of the factorization are stored\n*          as an upper or lower triangular matrix.\n*          = 'U':  Upper triangular, form is A = U*D*U**T;\n*          = 'L':  Lower triangular, form is A = L*D*L**T.\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n*          On entry, the NNB diagonal matrix D and the multipliers\n*          used to obtain the factor U or L as computed by DSYTRF.\n*\n*          On exit, if INFO = 0, the (symmetric) inverse of the original\n*          matrix.  If UPLO = 'U', the upper triangular part of the\n*          inverse is formed and the part of A below the diagonal is not\n*          referenced; if UPLO = 'L' the lower triangular part of the\n*          inverse is formed and the part of A above the diagonal is\n*          not referenced.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A.  LDA >= max(1,N).\n*\n*  IPIV    (input) INTEGER array, dimension (N)\n*          Details of the interchanges and the NNB structure of D\n*          as determined by DSYTRF.\n*\n*  WORK    (workspace) DOUBLE PRECISION array, dimension (N+NNB+1,NNB+3)\n*\n*  NB      (input) INTEGER\n*          Block size\n*\n*  INFO    (output) INTEGER\n*          = 0: successful exit\n*          < 0: if INFO = -i, the i-th argument had an illegal value\n*          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its\n*               inverse could not be computed.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, a = NumRu::Lapack.dsytri2x( uplo, a, ipiv, nb, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 4 && argc != 4)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
  rblapack_uplo = argv[0];
  rblapack_a = argv[1];
  rblapack_ipiv = argv[2];
  rblapack_nb = argv[3];
  if (argc == 4) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_ipiv))
    rb_raise(rb_eArgError, "ipiv (3th argument) must be NArray");
  if (NA_RANK(rblapack_ipiv) != 1)
    rb_raise(rb_eArgError, "rank of ipiv (3th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_ipiv);
  if (NA_TYPE(rblapack_ipiv) != NA_LINT)
    rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
  ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (2th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  if (NA_SHAPE1(rblapack_a) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 0 of ipiv");
  if (NA_TYPE(rblapack_a) != NA_DFLOAT)
    rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
  a = NA_PTR_TYPE(rblapack_a, doublereal*);
  nb = NUM2INT(rblapack_nb);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublereal*);
  MEMCPY(a_out__, a, doublereal, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  work = ALLOC_N(doublereal, (n+nb+1)*(nb+3));

  dsytri2x_(&uplo, &n, a, &lda, ipiv, work, &nb, &info);

  free(work);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(2, rblapack_info, rblapack_a);
}

void
init_lapack_dsytri2x(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "dsytri2x", rblapack_dsytri2x, -1);
}