1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
#include "rb_lapack.h"
extern VOID dtgex2_(logical* wantq, logical* wantz, integer* n, doublereal* a, integer* lda, doublereal* b, integer* ldb, doublereal* q, integer* ldq, doublereal* z, integer* ldz, integer* j1, integer* n1, integer* n2, doublereal* work, integer* lwork, integer* info);
static VALUE
rblapack_dtgex2(int argc, VALUE *argv, VALUE self){
VALUE rblapack_wantq;
logical wantq;
VALUE rblapack_wantz;
logical wantz;
VALUE rblapack_a;
doublereal *a;
VALUE rblapack_b;
doublereal *b;
VALUE rblapack_q;
doublereal *q;
VALUE rblapack_z;
doublereal *z;
VALUE rblapack_j1;
integer j1;
VALUE rblapack_n1;
integer n1;
VALUE rblapack_n2;
integer n2;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
doublereal *a_out__;
VALUE rblapack_b_out__;
doublereal *b_out__;
VALUE rblapack_q_out__;
doublereal *q_out__;
VALUE rblapack_z_out__;
doublereal *z_out__;
doublereal *work;
integer lda;
integer n;
integer ldb;
integer ldq;
integer ldz;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, a, b, q, z = NumRu::Lapack.dtgex2( wantq, wantz, a, b, q, z, j1, n1, n2, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, J1, N1, N2, WORK, LWORK, INFO )\n\n* Purpose\n* =======\n*\n* DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)\n* of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair\n* (A, B) by an orthogonal equivalence transformation.\n*\n* (A, B) must be in generalized real Schur canonical form (as returned\n* by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2\n* diagonal blocks. B is upper triangular.\n*\n* Optionally, the matrices Q and Z of generalized Schur vectors are\n* updated.\n*\n* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'\n* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'\n*\n*\n\n* Arguments\n* =========\n*\n* WANTQ (input) LOGICAL\n* .TRUE. : update the left transformation matrix Q;\n* .FALSE.: do not update Q.\n*\n* WANTZ (input) LOGICAL\n* .TRUE. : update the right transformation matrix Z;\n* .FALSE.: do not update Z.\n*\n* N (input) INTEGER\n* The order of the matrices A and B. N >= 0.\n*\n* A (input/output) DOUBLE PRECISION array, dimensions (LDA,N)\n* On entry, the matrix A in the pair (A, B).\n* On exit, the updated matrix A.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* B (input/output) DOUBLE PRECISION array, dimensions (LDB,N)\n* On entry, the matrix B in the pair (A, B).\n* On exit, the updated matrix B.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)\n* On entry, if WANTQ = .TRUE., the orthogonal matrix Q.\n* On exit, the updated matrix Q.\n* Not referenced if WANTQ = .FALSE..\n*\n* LDQ (input) INTEGER\n* The leading dimension of the array Q. LDQ >= 1.\n* If WANTQ = .TRUE., LDQ >= N.\n*\n* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)\n* On entry, if WANTZ =.TRUE., the orthogonal matrix Z.\n* On exit, the updated matrix Z.\n* Not referenced if WANTZ = .FALSE..\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1.\n* If WANTZ = .TRUE., LDZ >= N.\n*\n* J1 (input) INTEGER\n* The index to the first block (A11, B11). 1 <= J1 <= N.\n*\n* N1 (input) INTEGER\n* The order of the first block (A11, B11). N1 = 0, 1 or 2.\n*\n* N2 (input) INTEGER\n* The order of the second block (A22, B22). N2 = 0, 1 or 2.\n*\n* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)).\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK.\n* LWORK >= MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 )\n*\n* INFO (output) INTEGER\n* =0: Successful exit\n* >0: If INFO = 1, the transformed matrix (A, B) would be\n* too far from generalized Schur form; the blocks are\n* not swapped and (A, B) and (Q, Z) are unchanged.\n* The problem of swapping is too ill-conditioned.\n* <0: If INFO = -16: LWORK is too small. Appropriate value\n* for LWORK is returned in WORK(1).\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Bo Kagstrom and Peter Poromaa, Department of Computing Science,\n* Umea University, S-901 87 Umea, Sweden.\n*\n* In the current code both weak and strong stability tests are\n* performed. The user can omit the strong stability test by changing\n* the internal logical parameter WANDS to .FALSE.. See ref. [2] for\n* details.\n*\n* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the\n* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in\n* M.S. Moonen et al (eds), Linear Algebra for Large Scale and\n* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.\n*\n* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified\n* Eigenvalues of a Regular Matrix Pair (A, B) and Condition\n* Estimation: Theory, Algorithms and Software,\n* Report UMINF - 94.04, Department of Computing Science, Umea\n* University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working\n* Note 87. To appear in Numerical Algorithms, 1996.\n*\n* =====================================================================\n* Replaced various illegal calls to DCOPY by calls to DLASET, or by DO\n* loops. Sven Hammarling, 1/5/02.\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, a, b, q, z = NumRu::Lapack.dtgex2( wantq, wantz, a, b, q, z, j1, n1, n2, [:lwork => lwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 9 && argc != 10)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 9)", argc);
rblapack_wantq = argv[0];
rblapack_wantz = argv[1];
rblapack_a = argv[2];
rblapack_b = argv[3];
rblapack_q = argv[4];
rblapack_z = argv[5];
rblapack_j1 = argv[6];
rblapack_n1 = argv[7];
rblapack_n2 = argv[8];
if (argc == 10) {
rblapack_lwork = argv[9];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
wantq = (rblapack_wantq == Qtrue);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (3th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_DFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
a = NA_PTR_TYPE(rblapack_a, doublereal*);
if (!NA_IsNArray(rblapack_q))
rb_raise(rb_eArgError, "q (5th argument) must be NArray");
if (NA_RANK(rblapack_q) != 2)
rb_raise(rb_eArgError, "rank of q (5th argument) must be %d", 2);
ldq = NA_SHAPE0(rblapack_q);
if (NA_SHAPE1(rblapack_q) != n)
rb_raise(rb_eRuntimeError, "shape 1 of q must be the same as shape 1 of a");
if (NA_TYPE(rblapack_q) != NA_DFLOAT)
rblapack_q = na_change_type(rblapack_q, NA_DFLOAT);
q = NA_PTR_TYPE(rblapack_q, doublereal*);
j1 = NUM2INT(rblapack_j1);
n2 = NUM2INT(rblapack_n2);
wantz = (rblapack_wantz == Qtrue);
if (!NA_IsNArray(rblapack_z))
rb_raise(rb_eArgError, "z (6th argument) must be NArray");
if (NA_RANK(rblapack_z) != 2)
rb_raise(rb_eArgError, "rank of z (6th argument) must be %d", 2);
ldz = NA_SHAPE0(rblapack_z);
if (NA_SHAPE1(rblapack_z) != n)
rb_raise(rb_eRuntimeError, "shape 1 of z must be the same as shape 1 of a");
if (NA_TYPE(rblapack_z) != NA_DFLOAT)
rblapack_z = na_change_type(rblapack_z, NA_DFLOAT);
z = NA_PTR_TYPE(rblapack_z, doublereal*);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (4th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
if (NA_SHAPE1(rblapack_b) != n)
rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of a");
if (NA_TYPE(rblapack_b) != NA_DFLOAT)
rblapack_b = na_change_type(rblapack_b, NA_DFLOAT);
b = NA_PTR_TYPE(rblapack_b, doublereal*);
n1 = NUM2INT(rblapack_n1);
lwork = MAX(1,(MAX(n*(n2+n1),(n2+n1)*(n2+n1)*2)));
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublereal*);
MEMCPY(a_out__, a, doublereal, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
{
na_shape_t shape[2];
shape[0] = ldb;
shape[1] = n;
rblapack_b_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublereal*);
MEMCPY(b_out__, b, doublereal, NA_TOTAL(rblapack_b));
rblapack_b = rblapack_b_out__;
b = b_out__;
{
na_shape_t shape[2];
shape[0] = ldq;
shape[1] = n;
rblapack_q_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
q_out__ = NA_PTR_TYPE(rblapack_q_out__, doublereal*);
MEMCPY(q_out__, q, doublereal, NA_TOTAL(rblapack_q));
rblapack_q = rblapack_q_out__;
q = q_out__;
{
na_shape_t shape[2];
shape[0] = ldz;
shape[1] = n;
rblapack_z_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
z_out__ = NA_PTR_TYPE(rblapack_z_out__, doublereal*);
MEMCPY(z_out__, z, doublereal, NA_TOTAL(rblapack_z));
rblapack_z = rblapack_z_out__;
z = z_out__;
work = ALLOC_N(doublereal, (lwork));
dtgex2_(&wantq, &wantz, &n, a, &lda, b, &ldb, q, &ldq, z, &ldz, &j1, &n1, &n2, work, &lwork, &info);
free(work);
rblapack_info = INT2NUM(info);
return rb_ary_new3(5, rblapack_info, rblapack_a, rblapack_b, rblapack_q, rblapack_z);
}
void
init_lapack_dtgex2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dtgex2", rblapack_dtgex2, -1);
}
|