1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
#include "rb_lapack.h"
extern VOID dtgsyl_(char* trans, integer* ijob, integer* m, integer* n, doublereal* a, integer* lda, doublereal* b, integer* ldb, doublereal* c, integer* ldc, doublereal* d, integer* ldd, doublereal* e, integer* lde, doublereal* f, integer* ldf, doublereal* scale, doublereal* dif, doublereal* work, integer* lwork, integer* iwork, integer* info);
static VALUE
rblapack_dtgsyl(int argc, VALUE *argv, VALUE self){
VALUE rblapack_trans;
char trans;
VALUE rblapack_ijob;
integer ijob;
VALUE rblapack_a;
doublereal *a;
VALUE rblapack_b;
doublereal *b;
VALUE rblapack_c;
doublereal *c;
VALUE rblapack_d;
doublereal *d;
VALUE rblapack_e;
doublereal *e;
VALUE rblapack_f;
doublereal *f;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_scale;
doublereal scale;
VALUE rblapack_dif;
doublereal dif;
VALUE rblapack_work;
doublereal *work;
VALUE rblapack_info;
integer info;
VALUE rblapack_c_out__;
doublereal *c_out__;
VALUE rblapack_f_out__;
doublereal *f_out__;
integer *iwork;
integer lda;
integer m;
integer ldb;
integer n;
integer ldc;
integer ldd;
integer lde;
integer ldf;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n scale, dif, work, info, c, f = NumRu::Lapack.dtgsyl( trans, ijob, a, b, c, d, e, f, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* DTGSYL solves the generalized Sylvester equation:\n*\n* A * R - L * B = scale * C (1)\n* D * R - L * E = scale * F\n*\n* where R and L are unknown m-by-n matrices, (A, D), (B, E) and\n* (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,\n* respectively, with real entries. (A, D) and (B, E) must be in\n* generalized (real) Schur canonical form, i.e. A, B are upper quasi\n* triangular and D, E are upper triangular.\n*\n* The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output\n* scaling factor chosen to avoid overflow.\n*\n* In matrix notation (1) is equivalent to solve Zx = scale b, where\n* Z is defined as\n*\n* Z = [ kron(In, A) -kron(B', Im) ] (2)\n* [ kron(In, D) -kron(E', Im) ].\n*\n* Here Ik is the identity matrix of size k and X' is the transpose of\n* X. kron(X, Y) is the Kronecker product between the matrices X and Y.\n*\n* If TRANS = 'T', DTGSYL solves the transposed system Z'*y = scale*b,\n* which is equivalent to solve for R and L in\n*\n* A' * R + D' * L = scale * C (3)\n* R * B' + L * E' = scale * (-F)\n*\n* This case (TRANS = 'T') is used to compute an one-norm-based estimate\n* of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)\n* and (B,E), using DLACON.\n*\n* If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate\n* of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the\n* reciprocal of the smallest singular value of Z. See [1-2] for more\n* information.\n*\n* This is a level 3 BLAS algorithm.\n*\n\n* Arguments\n* =========\n*\n* TRANS (input) CHARACTER*1\n* = 'N', solve the generalized Sylvester equation (1).\n* = 'T', solve the 'transposed' system (3).\n*\n* IJOB (input) INTEGER\n* Specifies what kind of functionality to be performed.\n* =0: solve (1) only.\n* =1: The functionality of 0 and 3.\n* =2: The functionality of 0 and 4.\n* =3: Only an estimate of Dif[(A,D), (B,E)] is computed.\n* (look ahead strategy IJOB = 1 is used).\n* =4: Only an estimate of Dif[(A,D), (B,E)] is computed.\n* ( DGECON on sub-systems is used ).\n* Not referenced if TRANS = 'T'.\n*\n* M (input) INTEGER\n* The order of the matrices A and D, and the row dimension of\n* the matrices C, F, R and L.\n*\n* N (input) INTEGER\n* The order of the matrices B and E, and the column dimension\n* of the matrices C, F, R and L.\n*\n* A (input) DOUBLE PRECISION array, dimension (LDA, M)\n* The upper quasi triangular matrix A.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1, M).\n*\n* B (input) DOUBLE PRECISION array, dimension (LDB, N)\n* The upper quasi triangular matrix B.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1, N).\n*\n* C (input/output) DOUBLE PRECISION array, dimension (LDC, N)\n* On entry, C contains the right-hand-side of the first matrix\n* equation in (1) or (3).\n* On exit, if IJOB = 0, 1 or 2, C has been overwritten by\n* the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,\n* the solution achieved during the computation of the\n* Dif-estimate.\n*\n* LDC (input) INTEGER\n* The leading dimension of the array C. LDC >= max(1, M).\n*\n* D (input) DOUBLE PRECISION array, dimension (LDD, M)\n* The upper triangular matrix D.\n*\n* LDD (input) INTEGER\n* The leading dimension of the array D. LDD >= max(1, M).\n*\n* E (input) DOUBLE PRECISION array, dimension (LDE, N)\n* The upper triangular matrix E.\n*\n* LDE (input) INTEGER\n* The leading dimension of the array E. LDE >= max(1, N).\n*\n* F (input/output) DOUBLE PRECISION array, dimension (LDF, N)\n* On entry, F contains the right-hand-side of the second matrix\n* equation in (1) or (3).\n* On exit, if IJOB = 0, 1 or 2, F has been overwritten by\n* the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,\n* the solution achieved during the computation of the\n* Dif-estimate.\n*\n* LDF (input) INTEGER\n* The leading dimension of the array F. LDF >= max(1, M).\n*\n* DIF (output) DOUBLE PRECISION\n* On exit DIF is the reciprocal of a lower bound of the\n* reciprocal of the Dif-function, i.e. DIF is an upper bound of\n* Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2).\n* IF IJOB = 0 or TRANS = 'T', DIF is not touched.\n*\n* SCALE (output) DOUBLE PRECISION\n* On exit SCALE is the scaling factor in (1) or (3).\n* If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,\n* to a slightly perturbed system but the input matrices A, B, D\n* and E have not been changed. If SCALE = 0, C and F hold the\n* solutions R and L, respectively, to the homogeneous system\n* with C = F = 0. Normally, SCALE = 1.\n*\n* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK. LWORK > = 1.\n* If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* IWORK (workspace) INTEGER array, dimension (M+N+6)\n*\n* INFO (output) INTEGER\n* =0: successful exit\n* <0: If INFO = -i, the i-th argument had an illegal value.\n* >0: (A, D) and (B, E) have common or close eigenvalues.\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Bo Kagstrom and Peter Poromaa, Department of Computing Science,\n* Umea University, S-901 87 Umea, Sweden.\n*\n* [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software\n* for Solving the Generalized Sylvester Equation and Estimating the\n* Separation between Regular Matrix Pairs, Report UMINF - 93.23,\n* Department of Computing Science, Umea University, S-901 87 Umea,\n* Sweden, December 1993, Revised April 1994, Also as LAPACK Working\n* Note 75. To appear in ACM Trans. on Math. Software, Vol 22,\n* No 1, 1996.\n*\n* [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester\n* Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.\n* Appl., 15(4):1045-1060, 1994\n*\n* [3] B. Kagstrom and L. Westin, Generalized Schur Methods with\n* Condition Estimators for Solving the Generalized Sylvester\n* Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,\n* July 1989, pp 745-751.\n*\n* =====================================================================\n* Replaced various illegal calls to DCOPY by calls to DLASET.\n* Sven Hammarling, 1/5/02.\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n scale, dif, work, info, c, f = NumRu::Lapack.dtgsyl( trans, ijob, a, b, c, d, e, f, [:lwork => lwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 8 && argc != 9)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
rblapack_trans = argv[0];
rblapack_ijob = argv[1];
rblapack_a = argv[2];
rblapack_b = argv[3];
rblapack_c = argv[4];
rblapack_d = argv[5];
rblapack_e = argv[6];
rblapack_f = argv[7];
if (argc == 9) {
rblapack_lwork = argv[8];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
trans = StringValueCStr(rblapack_trans)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (3th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
m = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_DFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
a = NA_PTR_TYPE(rblapack_a, doublereal*);
if (!NA_IsNArray(rblapack_c))
rb_raise(rb_eArgError, "c (5th argument) must be NArray");
if (NA_RANK(rblapack_c) != 2)
rb_raise(rb_eArgError, "rank of c (5th argument) must be %d", 2);
ldc = NA_SHAPE0(rblapack_c);
n = NA_SHAPE1(rblapack_c);
if (NA_TYPE(rblapack_c) != NA_DFLOAT)
rblapack_c = na_change_type(rblapack_c, NA_DFLOAT);
c = NA_PTR_TYPE(rblapack_c, doublereal*);
if (!NA_IsNArray(rblapack_e))
rb_raise(rb_eArgError, "e (7th argument) must be NArray");
if (NA_RANK(rblapack_e) != 2)
rb_raise(rb_eArgError, "rank of e (7th argument) must be %d", 2);
lde = NA_SHAPE0(rblapack_e);
if (NA_SHAPE1(rblapack_e) != n)
rb_raise(rb_eRuntimeError, "shape 1 of e must be the same as shape 1 of c");
if (NA_TYPE(rblapack_e) != NA_DFLOAT)
rblapack_e = na_change_type(rblapack_e, NA_DFLOAT);
e = NA_PTR_TYPE(rblapack_e, doublereal*);
ijob = NUM2INT(rblapack_ijob);
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (6th argument) must be NArray");
if (NA_RANK(rblapack_d) != 2)
rb_raise(rb_eArgError, "rank of d (6th argument) must be %d", 2);
ldd = NA_SHAPE0(rblapack_d);
if (NA_SHAPE1(rblapack_d) != m)
rb_raise(rb_eRuntimeError, "shape 1 of d must be the same as shape 1 of a");
if (NA_TYPE(rblapack_d) != NA_DFLOAT)
rblapack_d = na_change_type(rblapack_d, NA_DFLOAT);
d = NA_PTR_TYPE(rblapack_d, doublereal*);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (4th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
if (NA_SHAPE1(rblapack_b) != n)
rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of c");
if (NA_TYPE(rblapack_b) != NA_DFLOAT)
rblapack_b = na_change_type(rblapack_b, NA_DFLOAT);
b = NA_PTR_TYPE(rblapack_b, doublereal*);
if (!NA_IsNArray(rblapack_f))
rb_raise(rb_eArgError, "f (8th argument) must be NArray");
if (NA_RANK(rblapack_f) != 2)
rb_raise(rb_eArgError, "rank of f (8th argument) must be %d", 2);
ldf = NA_SHAPE0(rblapack_f);
if (NA_SHAPE1(rblapack_f) != n)
rb_raise(rb_eRuntimeError, "shape 1 of f must be the same as shape 1 of c");
if (NA_TYPE(rblapack_f) != NA_DFLOAT)
rblapack_f = na_change_type(rblapack_f, NA_DFLOAT);
f = NA_PTR_TYPE(rblapack_f, doublereal*);
if (rblapack_lwork == Qnil)
lwork = ((ijob==1||ijob==2)&&lsame_(&trans,"N")) ? 2*m*n : 1;
else {
lwork = NUM2INT(rblapack_lwork);
}
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldc;
shape[1] = n;
rblapack_c_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
c_out__ = NA_PTR_TYPE(rblapack_c_out__, doublereal*);
MEMCPY(c_out__, c, doublereal, NA_TOTAL(rblapack_c));
rblapack_c = rblapack_c_out__;
c = c_out__;
{
na_shape_t shape[2];
shape[0] = ldf;
shape[1] = n;
rblapack_f_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
f_out__ = NA_PTR_TYPE(rblapack_f_out__, doublereal*);
MEMCPY(f_out__, f, doublereal, NA_TOTAL(rblapack_f));
rblapack_f = rblapack_f_out__;
f = f_out__;
iwork = ALLOC_N(integer, (m+n+6));
dtgsyl_(&trans, &ijob, &m, &n, a, &lda, b, &ldb, c, &ldc, d, &ldd, e, &lde, f, &ldf, &scale, &dif, work, &lwork, iwork, &info);
free(iwork);
rblapack_scale = rb_float_new((double)scale);
rblapack_dif = rb_float_new((double)dif);
rblapack_info = INT2NUM(info);
return rb_ary_new3(6, rblapack_scale, rblapack_dif, rblapack_work, rblapack_info, rblapack_c, rblapack_f);
}
void
init_lapack_dtgsyl(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dtgsyl", rblapack_dtgsyl, -1);
}
|