File: sgbsv.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (115 lines) | stat: -rw-r--r-- 7,337 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#include "rb_lapack.h"

extern VOID sgbsv_(integer* n, integer* kl, integer* ku, integer* nrhs, real* ab, integer* ldab, integer* ipiv, real* b, integer* ldb, integer* info);


static VALUE
rblapack_sgbsv(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_kl;
  integer kl; 
  VALUE rblapack_ku;
  integer ku; 
  VALUE rblapack_ab;
  real *ab; 
  VALUE rblapack_b;
  real *b; 
  VALUE rblapack_ipiv;
  integer *ipiv; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_ab_out__;
  real *ab_out__;
  VALUE rblapack_b_out__;
  real *b_out__;

  integer ldab;
  integer n;
  integer ldb;
  integer nrhs;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  ipiv, info, ab, b = NumRu::Lapack.sgbsv( kl, ku, ab, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE SGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )\n\n*  Purpose\n*  =======\n*\n*  SGBSV computes the solution to a real system of linear equations\n*  A * X = B, where A is a band matrix of order N with KL subdiagonals\n*  and KU superdiagonals, and X and B are N-by-NRHS matrices.\n*\n*  The LU decomposition with partial pivoting and row interchanges is\n*  used to factor A as A = L * U, where L is a product of permutation\n*  and unit lower triangular matrices with KL subdiagonals, and U is\n*  upper triangular with KL+KU superdiagonals.  The factored form of A\n*  is then used to solve the system of equations A * X = B.\n*\n\n*  Arguments\n*  =========\n*\n*  N       (input) INTEGER\n*          The number of linear equations, i.e., the order of the\n*          matrix A.  N >= 0.\n*\n*  KL      (input) INTEGER\n*          The number of subdiagonals within the band of A.  KL >= 0.\n*\n*  KU      (input) INTEGER\n*          The number of superdiagonals within the band of A.  KU >= 0.\n*\n*  NRHS    (input) INTEGER\n*          The number of right hand sides, i.e., the number of columns\n*          of the matrix B.  NRHS >= 0.\n*\n*  AB      (input/output) REAL array, dimension (LDAB,N)\n*          On entry, the matrix A in band storage, in rows KL+1 to\n*          2*KL+KU+1; rows 1 to KL of the array need not be set.\n*          The j-th column of A is stored in the j-th column of the\n*          array AB as follows:\n*          AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)\n*          On exit, details of the factorization: U is stored as an\n*          upper triangular band matrix with KL+KU superdiagonals in\n*          rows 1 to KL+KU+1, and the multipliers used during the\n*          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.\n*          See below for further details.\n*\n*  LDAB    (input) INTEGER\n*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.\n*\n*  IPIV    (output) INTEGER array, dimension (N)\n*          The pivot indices that define the permutation matrix P;\n*          row i of the matrix was interchanged with row IPIV(i).\n*\n*  B       (input/output) REAL array, dimension (LDB,NRHS)\n*          On entry, the N-by-NRHS right hand side matrix B.\n*          On exit, if INFO = 0, the N-by-NRHS solution matrix X.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B.  LDB >= max(1,N).\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization\n*                has been completed, but the factor U is exactly\n*                singular, and the solution has not been computed.\n*\n\n*  Further Details\n*  ===============\n*\n*  The band storage scheme is illustrated by the following example, when\n*  M = N = 6, KL = 2, KU = 1:\n*\n*  On entry:                       On exit:\n*\n*      *    *    *    +    +    +       *    *    *   u14  u25  u36\n*      *    *    +    +    +    +       *    *   u13  u24  u35  u46\n*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56\n*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66\n*     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *\n*     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *\n*\n*  Array elements marked * are not used by the routine; elements marked\n*  + need not be set on entry, but are required by the routine to store\n*  elements of U because of fill-in resulting from the row interchanges.\n*\n*  =====================================================================\n*\n*     .. External Subroutines ..\n      EXTERNAL           SGBTRF, SGBTRS, XERBLA\n*     ..\n*     .. Intrinsic Functions ..\n      INTRINSIC          MAX\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  ipiv, info, ab, b = NumRu::Lapack.sgbsv( kl, ku, ab, b, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 4 && argc != 4)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
  rblapack_kl = argv[0];
  rblapack_ku = argv[1];
  rblapack_ab = argv[2];
  rblapack_b = argv[3];
  if (argc == 4) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  kl = NUM2INT(rblapack_kl);
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (3th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (3th argument) must be %d", 2);
  ldab = NA_SHAPE0(rblapack_ab);
  n = NA_SHAPE1(rblapack_ab);
  if (NA_TYPE(rblapack_ab) != NA_SFLOAT)
    rblapack_ab = na_change_type(rblapack_ab, NA_SFLOAT);
  ab = NA_PTR_TYPE(rblapack_ab, real*);
  ku = NUM2INT(rblapack_ku);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (4th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  nrhs = NA_SHAPE1(rblapack_b);
  if (NA_TYPE(rblapack_b) != NA_SFLOAT)
    rblapack_b = na_change_type(rblapack_b, NA_SFLOAT);
  b = NA_PTR_TYPE(rblapack_b, real*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_ipiv = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
  {
    na_shape_t shape[2];
    shape[0] = ldab;
    shape[1] = n;
    rblapack_ab_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, real*);
  MEMCPY(ab_out__, ab, real, NA_TOTAL(rblapack_ab));
  rblapack_ab = rblapack_ab_out__;
  ab = ab_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = nrhs;
    rblapack_b_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, real*);
  MEMCPY(b_out__, b, real, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;

  sgbsv_(&n, &kl, &ku, &nrhs, ab, &ldab, ipiv, b, &ldb, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(4, rblapack_ipiv, rblapack_info, rblapack_ab, rblapack_b);
}

void
init_lapack_sgbsv(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "sgbsv", rblapack_sgbsv, -1);
}