File: sgeev.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (137 lines) | stat: -rw-r--r-- 8,269 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#include "rb_lapack.h"

extern VOID sgeev_(char* jobvl, char* jobvr, integer* n, real* a, integer* lda, real* wr, real* wi, real* vl, integer* ldvl, real* vr, integer* ldvr, real* work, integer* lwork, integer* info);


static VALUE
rblapack_sgeev(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_jobvl;
  char jobvl; 
  VALUE rblapack_jobvr;
  char jobvr; 
  VALUE rblapack_a;
  real *a; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_wr;
  real *wr; 
  VALUE rblapack_wi;
  real *wi; 
  VALUE rblapack_vl;
  real *vl; 
  VALUE rblapack_vr;
  real *vr; 
  VALUE rblapack_work;
  real *work; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  real *a_out__;

  integer lda;
  integer n;
  integer ldvl;
  integer ldvr;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  wr, wi, vl, vr, work, info, a = NumRu::Lapack.sgeev( jobvl, jobvr, a, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE SGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  SGEEV computes for an N-by-N real nonsymmetric matrix A, the\n*  eigenvalues and, optionally, the left and/or right eigenvectors.\n*\n*  The right eigenvector v(j) of A satisfies\n*                   A * v(j) = lambda(j) * v(j)\n*  where lambda(j) is its eigenvalue.\n*  The left eigenvector u(j) of A satisfies\n*                u(j)**H * A = lambda(j) * u(j)**H\n*  where u(j)**H denotes the conjugate transpose of u(j).\n*\n*  The computed eigenvectors are normalized to have Euclidean norm\n*  equal to 1 and largest component real.\n*\n\n*  Arguments\n*  =========\n*\n*  JOBVL   (input) CHARACTER*1\n*          = 'N': left eigenvectors of A are not computed;\n*          = 'V': left eigenvectors of A are computed.\n*\n*  JOBVR   (input) CHARACTER*1\n*          = 'N': right eigenvectors of A are not computed;\n*          = 'V': right eigenvectors of A are computed.\n*\n*  N       (input) INTEGER\n*          The order of the matrix A. N >= 0.\n*\n*  A       (input/output) REAL array, dimension (LDA,N)\n*          On entry, the N-by-N matrix A.\n*          On exit, A has been overwritten.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A.  LDA >= max(1,N).\n*\n*  WR      (output) REAL array, dimension (N)\n*  WI      (output) REAL array, dimension (N)\n*          WR and WI contain the real and imaginary parts,\n*          respectively, of the computed eigenvalues.  Complex\n*          conjugate pairs of eigenvalues appear consecutively\n*          with the eigenvalue having the positive imaginary part\n*          first.\n*\n*  VL      (output) REAL array, dimension (LDVL,N)\n*          If JOBVL = 'V', the left eigenvectors u(j) are stored one\n*          after another in the columns of VL, in the same order\n*          as their eigenvalues.\n*          If JOBVL = 'N', VL is not referenced.\n*          If the j-th eigenvalue is real, then u(j) = VL(:,j),\n*          the j-th column of VL.\n*          If the j-th and (j+1)-st eigenvalues form a complex\n*          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and\n*          u(j+1) = VL(:,j) - i*VL(:,j+1).\n*\n*  LDVL    (input) INTEGER\n*          The leading dimension of the array VL.  LDVL >= 1; if\n*          JOBVL = 'V', LDVL >= N.\n*\n*  VR      (output) REAL array, dimension (LDVR,N)\n*          If JOBVR = 'V', the right eigenvectors v(j) are stored one\n*          after another in the columns of VR, in the same order\n*          as their eigenvalues.\n*          If JOBVR = 'N', VR is not referenced.\n*          If the j-th eigenvalue is real, then v(j) = VR(:,j),\n*          the j-th column of VR.\n*          If the j-th and (j+1)-st eigenvalues form a complex\n*          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and\n*          v(j+1) = VR(:,j) - i*VR(:,j+1).\n*\n*  LDVR    (input) INTEGER\n*          The leading dimension of the array VR.  LDVR >= 1; if\n*          JOBVR = 'V', LDVR >= N.\n*\n*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))\n*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The dimension of the array WORK.  LWORK >= max(1,3*N), and\n*          if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N.  For good\n*          performance, LWORK must generally be larger.\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal size of the WORK array, returns\n*          this value as the first entry of the WORK array, and no error\n*          message related to LWORK is issued by XERBLA.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value.\n*          > 0:  if INFO = i, the QR algorithm failed to compute all the\n*                eigenvalues, and no eigenvectors have been computed;\n*                elements i+1:N of WR and WI contain eigenvalues which\n*                have converged.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  wr, wi, vl, vr, work, info, a = NumRu::Lapack.sgeev( jobvl, jobvr, a, [:lwork => lwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 3 && argc != 4)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
  rblapack_jobvl = argv[0];
  rblapack_jobvr = argv[1];
  rblapack_a = argv[2];
  if (argc == 4) {
    rblapack_lwork = argv[3];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
  } else {
    rblapack_lwork = Qnil;
  }

  jobvl = StringValueCStr(rblapack_jobvl)[0];
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (3th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_SFLOAT)
    rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
  a = NA_PTR_TYPE(rblapack_a, real*);
  ldvl = lsame_(&jobvl,"V") ? n : 1;
  jobvr = StringValueCStr(rblapack_jobvr)[0];
  ldvr = lsame_(&jobvr,"V") ? n : 1;
  if (rblapack_lwork == Qnil)
    lwork = (lsame_(&jobvl,"V")||lsame_(&jobvr,"V")) ? 4*n : 3*n;
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_wr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  wr = NA_PTR_TYPE(rblapack_wr, real*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_wi = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  wi = NA_PTR_TYPE(rblapack_wi, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldvl;
    shape[1] = n;
    rblapack_vl = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  vl = NA_PTR_TYPE(rblapack_vl, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldvr;
    shape[1] = n;
    rblapack_vr = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  vr = NA_PTR_TYPE(rblapack_vr, real*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, real*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
  MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;

  sgeev_(&jobvl, &jobvr, &n, a, &lda, wr, wi, vl, &ldvl, vr, &ldvr, work, &lwork, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(7, rblapack_wr, rblapack_wi, rblapack_vl, rblapack_vr, rblapack_work, rblapack_info, rblapack_a);
}

void
init_lapack_sgeev(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "sgeev", rblapack_sgeev, -1);
}