1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
#include "rb_lapack.h"
extern VOID sgeqp3_(integer* m, integer* n, real* a, integer* lda, integer* jpvt, real* tau, real* work, integer* lwork, integer* info);
static VALUE
rblapack_sgeqp3(int argc, VALUE *argv, VALUE self){
VALUE rblapack_m;
integer m;
VALUE rblapack_a;
real *a;
VALUE rblapack_jpvt;
integer *jpvt;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_tau;
real *tau;
VALUE rblapack_work;
real *work;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
real *a_out__;
VALUE rblapack_jpvt_out__;
integer *jpvt_out__;
integer lda;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n tau, work, info, a, jpvt = NumRu::Lapack.sgeqp3( m, a, jpvt, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO )\n\n* Purpose\n* =======\n*\n* SGEQP3 computes a QR factorization with column pivoting of a\n* matrix A: A*P = Q*R using Level 3 BLAS.\n*\n\n* Arguments\n* =========\n*\n* M (input) INTEGER\n* The number of rows of the matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrix A. N >= 0.\n*\n* A (input/output) REAL array, dimension (LDA,N)\n* On entry, the M-by-N matrix A.\n* On exit, the upper triangle of the array contains the\n* min(M,N)-by-N upper trapezoidal matrix R; the elements below\n* the diagonal, together with the array TAU, represent the\n* orthogonal matrix Q as a product of min(M,N) elementary\n* reflectors.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* JPVT (input/output) INTEGER array, dimension (N)\n* On entry, if JPVT(J).ne.0, the J-th column of A is permuted\n* to the front of A*P (a leading column); if JPVT(J)=0,\n* the J-th column of A is a free column.\n* On exit, if JPVT(J)=K, then the J-th column of A*P was the\n* the K-th column of A.\n*\n* TAU (output) REAL array, dimension (min(M,N))\n* The scalar factors of the elementary reflectors.\n*\n* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))\n* On exit, if INFO=0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK. LWORK >= 3*N+1.\n* For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB\n* is the optimal blocksize.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n*\n\n* Further Details\n* ===============\n*\n* The matrix Q is represented as a product of elementary reflectors\n*\n* Q = H(1) H(2) . . . H(k), where k = min(m,n).\n*\n* Each H(i) has the form\n*\n* H(i) = I - tau * v * v'\n*\n* where tau is a real/complex scalar, and v is a real/complex vector\n* with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in\n* A(i+1:m,i), and tau in TAU(i).\n*\n* Based on contributions by\n* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain\n* X. Sun, Computer Science Dept., Duke University, USA\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n tau, work, info, a, jpvt = NumRu::Lapack.sgeqp3( m, a, jpvt, [:lwork => lwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_m = argv[0];
rblapack_a = argv[1];
rblapack_jpvt = argv[2];
if (argc == 4) {
rblapack_lwork = argv[3];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
m = NUM2INT(rblapack_m);
if (!NA_IsNArray(rblapack_jpvt))
rb_raise(rb_eArgError, "jpvt (3th argument) must be NArray");
if (NA_RANK(rblapack_jpvt) != 1)
rb_raise(rb_eArgError, "rank of jpvt (3th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_jpvt);
if (NA_TYPE(rblapack_jpvt) != NA_LINT)
rblapack_jpvt = na_change_type(rblapack_jpvt, NA_LINT);
jpvt = NA_PTR_TYPE(rblapack_jpvt, integer*);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (2th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
if (NA_SHAPE1(rblapack_a) != n)
rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 0 of jpvt");
if (NA_TYPE(rblapack_a) != NA_SFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
a = NA_PTR_TYPE(rblapack_a, real*);
if (rblapack_lwork == Qnil)
lwork = 3*n+1;
else {
lwork = NUM2INT(rblapack_lwork);
}
{
na_shape_t shape[1];
shape[0] = MIN(m,n);
rblapack_tau = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
tau = NA_PTR_TYPE(rblapack_tau, real*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, real*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
{
na_shape_t shape[1];
shape[0] = n;
rblapack_jpvt_out__ = na_make_object(NA_LINT, 1, shape, cNArray);
}
jpvt_out__ = NA_PTR_TYPE(rblapack_jpvt_out__, integer*);
MEMCPY(jpvt_out__, jpvt, integer, NA_TOTAL(rblapack_jpvt));
rblapack_jpvt = rblapack_jpvt_out__;
jpvt = jpvt_out__;
sgeqp3_(&m, &n, a, &lda, jpvt, tau, work, &lwork, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(5, rblapack_tau, rblapack_work, rblapack_info, rblapack_a, rblapack_jpvt);
}
void
init_lapack_sgeqp3(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "sgeqp3", rblapack_sgeqp3, -1);
}
|