File: sla_gbrpvgrw.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (91 lines) | stat: -rw-r--r-- 4,879 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#include "rb_lapack.h"

extern real sla_gbrpvgrw_(integer* n, integer* kl, integer* ku, integer* ncols, real* ab, integer* ldab, real* afb, integer* ldafb);


static VALUE
rblapack_sla_gbrpvgrw(int argc, VALUE *argv, VALUE self){
#ifdef USEXBLAS
  VALUE rblapack_kl;
  integer kl; 
  VALUE rblapack_ku;
  integer ku; 
  VALUE rblapack_ncols;
  integer ncols; 
  VALUE rblapack_ab;
  real *ab; 
  VALUE rblapack_afb;
  real *afb; 
  VALUE rblapack___out__;
  real __out__; 

  integer ldab;
  integer n;
  integer ldafb;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  __out__ = NumRu::Lapack.sla_gbrpvgrw( kl, ku, ncols, ab, afb, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      REAL FUNCTION SLA_GBRPVGRW( N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB )\n\n*  Purpose\n*  =======\n*\n*  SLA_GBRPVGRW computes the reciprocal pivot growth factor\n*  norm(A)/norm(U). The \"max absolute element\" norm is used. If this is\n*  much less than 1, the stability of the LU factorization of the\n*  (equilibrated) matrix A could be poor. This also means that the\n*  solution X, estimated condition numbers, and error bounds could be\n*  unreliable.\n*\n\n*  Arguments\n*  =========\n*\n*     N       (input) INTEGER\n*     The number of linear equations, i.e., the order of the\n*     matrix A.  N >= 0.\n*\n*     KL      (input) INTEGER\n*     The number of subdiagonals within the band of A.  KL >= 0.\n*\n*     KU      (input) INTEGER\n*     The number of superdiagonals within the band of A.  KU >= 0.\n*\n*     NCOLS   (input) INTEGER\n*     The number of columns of the matrix A.  NCOLS >= 0.\n*\n*     AB      (input) REAL array, dimension (LDAB,N)\n*     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.\n*     The j-th column of A is stored in the j-th column of the\n*     array AB as follows:\n*     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)\n*\n*     LDAB    (input) INTEGER\n*     The leading dimension of the array AB.  LDAB >= KL+KU+1.\n*\n*     AFB     (input) REAL array, dimension (LDAFB,N)\n*     Details of the LU factorization of the band matrix A, as\n*     computed by SGBTRF.  U is stored as an upper triangular\n*     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,\n*     and the multipliers used during the factorization are stored\n*     in rows KL+KU+2 to 2*KL+KU+1.\n*\n*     LDAFB   (input) INTEGER\n*     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.\n*\n\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      INTEGER            I, J, KD\n      REAL               AMAX, UMAX, RPVGRW\n*     ..\n*     .. Intrinsic Functions ..\n      INTRINSIC          ABS, MAX, MIN\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  __out__ = NumRu::Lapack.sla_gbrpvgrw( kl, ku, ncols, ab, afb, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 5 && argc != 5)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
  rblapack_kl = argv[0];
  rblapack_ku = argv[1];
  rblapack_ncols = argv[2];
  rblapack_ab = argv[3];
  rblapack_afb = argv[4];
  if (argc == 5) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  kl = NUM2INT(rblapack_kl);
  ncols = NUM2INT(rblapack_ncols);
  if (!NA_IsNArray(rblapack_afb))
    rb_raise(rb_eArgError, "afb (5th argument) must be NArray");
  if (NA_RANK(rblapack_afb) != 2)
    rb_raise(rb_eArgError, "rank of afb (5th argument) must be %d", 2);
  ldafb = NA_SHAPE0(rblapack_afb);
  n = NA_SHAPE1(rblapack_afb);
  if (NA_TYPE(rblapack_afb) != NA_SFLOAT)
    rblapack_afb = na_change_type(rblapack_afb, NA_SFLOAT);
  afb = NA_PTR_TYPE(rblapack_afb, real*);
  ku = NUM2INT(rblapack_ku);
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (4th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (4th argument) must be %d", 2);
  ldab = NA_SHAPE0(rblapack_ab);
  if (NA_SHAPE1(rblapack_ab) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of ab must be the same as shape 1 of afb");
  if (NA_TYPE(rblapack_ab) != NA_SFLOAT)
    rblapack_ab = na_change_type(rblapack_ab, NA_SFLOAT);
  ab = NA_PTR_TYPE(rblapack_ab, real*);

  __out__ = sla_gbrpvgrw_(&n, &kl, &ku, &ncols, ab, &ldab, afb, &ldafb);

  rblapack___out__ = rb_float_new((double)__out__);
  return rblapack___out__;
#else
  return Qnil;
#endif
}

void
init_lapack_sla_gbrpvgrw(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "sla_gbrpvgrw", rblapack_sla_gbrpvgrw, -1);
}