1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
#include "rb_lapack.h"
extern VOID slaebz_(integer* ijob, integer* nitmax, integer* n, integer* mmax, integer* minp, integer* nbmin, real* abstol, real* reltol, real* pivmin, real* d, real* e, real* e2, integer* nval, real* ab, real* c, integer* mout, integer* nab, real* work, integer* iwork, integer* info);
static VALUE
rblapack_slaebz(int argc, VALUE *argv, VALUE self){
VALUE rblapack_ijob;
integer ijob;
VALUE rblapack_nitmax;
integer nitmax;
VALUE rblapack_minp;
integer minp;
VALUE rblapack_nbmin;
integer nbmin;
VALUE rblapack_abstol;
real abstol;
VALUE rblapack_reltol;
real reltol;
VALUE rblapack_pivmin;
real pivmin;
VALUE rblapack_d;
real *d;
VALUE rblapack_e;
real *e;
VALUE rblapack_e2;
real *e2;
VALUE rblapack_nval;
integer *nval;
VALUE rblapack_ab;
real *ab;
VALUE rblapack_c;
real *c;
VALUE rblapack_nab;
integer *nab;
VALUE rblapack_mout;
integer mout;
VALUE rblapack_info;
integer info;
VALUE rblapack_nval_out__;
integer *nval_out__;
VALUE rblapack_ab_out__;
real *ab_out__;
VALUE rblapack_c_out__;
real *c_out__;
VALUE rblapack_nab_out__;
integer *nab_out__;
real *work;
integer *iwork;
integer n;
integer mmax;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n mout, info, nval, ab, c, nab = NumRu::Lapack.slaebz( ijob, nitmax, minp, nbmin, abstol, reltol, pivmin, d, e, e2, nval, ab, c, nab, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL, RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT, NAB, WORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* SLAEBZ contains the iteration loops which compute and use the\n* function N(w), which is the count of eigenvalues of a symmetric\n* tridiagonal matrix T less than or equal to its argument w. It\n* performs a choice of two types of loops:\n*\n* IJOB=1, followed by\n* IJOB=2: It takes as input a list of intervals and returns a list of\n* sufficiently small intervals whose union contains the same\n* eigenvalues as the union of the original intervals.\n* The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP.\n* The output interval (AB(j,1),AB(j,2)] will contain\n* eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT.\n*\n* IJOB=3: It performs a binary search in each input interval\n* (AB(j,1),AB(j,2)] for a point w(j) such that\n* N(w(j))=NVAL(j), and uses C(j) as the starting point of\n* the search. If such a w(j) is found, then on output\n* AB(j,1)=AB(j,2)=w. If no such w(j) is found, then on output\n* (AB(j,1),AB(j,2)] will be a small interval containing the\n* point where N(w) jumps through NVAL(j), unless that point\n* lies outside the initial interval.\n*\n* Note that the intervals are in all cases half-open intervals,\n* i.e., of the form (a,b] , which includes b but not a .\n*\n* To avoid underflow, the matrix should be scaled so that its largest\n* element is no greater than overflow**(1/2) * underflow**(1/4)\n* in absolute value. To assure the most accurate computation\n* of small eigenvalues, the matrix should be scaled to be\n* not much smaller than that, either.\n*\n* See W. Kahan \"Accurate Eigenvalues of a Symmetric Tridiagonal\n* Matrix\", Report CS41, Computer Science Dept., Stanford\n* University, July 21, 1966\n*\n* Note: the arguments are, in general, *not* checked for unreasonable\n* values.\n*\n\n* Arguments\n* =========\n*\n* IJOB (input) INTEGER\n* Specifies what is to be done:\n* = 1: Compute NAB for the initial intervals.\n* = 2: Perform bisection iteration to find eigenvalues of T.\n* = 3: Perform bisection iteration to invert N(w), i.e.,\n* to find a point which has a specified number of\n* eigenvalues of T to its left.\n* Other values will cause SLAEBZ to return with INFO=-1.\n*\n* NITMAX (input) INTEGER\n* The maximum number of \"levels\" of bisection to be\n* performed, i.e., an interval of width W will not be made\n* smaller than 2^(-NITMAX) * W. If not all intervals\n* have converged after NITMAX iterations, then INFO is set\n* to the number of non-converged intervals.\n*\n* N (input) INTEGER\n* The dimension n of the tridiagonal matrix T. It must be at\n* least 1.\n*\n* MMAX (input) INTEGER\n* The maximum number of intervals. If more than MMAX intervals\n* are generated, then SLAEBZ will quit with INFO=MMAX+1.\n*\n* MINP (input) INTEGER\n* The initial number of intervals. It may not be greater than\n* MMAX.\n*\n* NBMIN (input) INTEGER\n* The smallest number of intervals that should be processed\n* using a vector loop. If zero, then only the scalar loop\n* will be used.\n*\n* ABSTOL (input) REAL\n* The minimum (absolute) width of an interval. When an\n* interval is narrower than ABSTOL, or than RELTOL times the\n* larger (in magnitude) endpoint, then it is considered to be\n* sufficiently small, i.e., converged. This must be at least\n* zero.\n*\n* RELTOL (input) REAL\n* The minimum relative width of an interval. When an interval\n* is narrower than ABSTOL, or than RELTOL times the larger (in\n* magnitude) endpoint, then it is considered to be\n* sufficiently small, i.e., converged. Note: this should\n* always be at least radix*machine epsilon.\n*\n* PIVMIN (input) REAL\n* The minimum absolute value of a \"pivot\" in the Sturm\n* sequence loop. This *must* be at least max |e(j)**2| *\n* safe_min and at least safe_min, where safe_min is at least\n* the smallest number that can divide one without overflow.\n*\n* D (input) REAL array, dimension (N)\n* The diagonal elements of the tridiagonal matrix T.\n*\n* E (input) REAL array, dimension (N)\n* The offdiagonal elements of the tridiagonal matrix T in\n* positions 1 through N-1. E(N) is arbitrary.\n*\n* E2 (input) REAL array, dimension (N)\n* The squares of the offdiagonal elements of the tridiagonal\n* matrix T. E2(N) is ignored.\n*\n* NVAL (input/output) INTEGER array, dimension (MINP)\n* If IJOB=1 or 2, not referenced.\n* If IJOB=3, the desired values of N(w). The elements of NVAL\n* will be reordered to correspond with the intervals in AB.\n* Thus, NVAL(j) on output will not, in general be the same as\n* NVAL(j) on input, but it will correspond with the interval\n* (AB(j,1),AB(j,2)] on output.\n*\n* AB (input/output) REAL array, dimension (MMAX,2)\n* The endpoints of the intervals. AB(j,1) is a(j), the left\n* endpoint of the j-th interval, and AB(j,2) is b(j), the\n* right endpoint of the j-th interval. The input intervals\n* will, in general, be modified, split, and reordered by the\n* calculation.\n*\n* C (input/output) REAL array, dimension (MMAX)\n* If IJOB=1, ignored.\n* If IJOB=2, workspace.\n* If IJOB=3, then on input C(j) should be initialized to the\n* first search point in the binary search.\n*\n* MOUT (output) INTEGER\n* If IJOB=1, the number of eigenvalues in the intervals.\n* If IJOB=2 or 3, the number of intervals output.\n* If IJOB=3, MOUT will equal MINP.\n*\n* NAB (input/output) INTEGER array, dimension (MMAX,2)\n* If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)).\n* If IJOB=2, then on input, NAB(i,j) should be set. It must\n* satisfy the condition:\n* N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)),\n* which means that in interval i only eigenvalues\n* NAB(i,1)+1,...,NAB(i,2) will be considered. Usually,\n* NAB(i,j)=N(AB(i,j)), from a previous call to SLAEBZ with\n* IJOB=1.\n* On output, NAB(i,j) will contain\n* max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of\n* the input interval that the output interval\n* (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the\n* the input values of NAB(k,1) and NAB(k,2).\n* If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)),\n* unless N(w) > NVAL(i) for all search points w , in which\n* case NAB(i,1) will not be modified, i.e., the output\n* value will be the same as the input value (modulo\n* reorderings -- see NVAL and AB), or unless N(w) < NVAL(i)\n* for all search points w , in which case NAB(i,2) will\n* not be modified. Normally, NAB should be set to some\n* distinctive value(s) before SLAEBZ is called.\n*\n* WORK (workspace) REAL array, dimension (MMAX)\n* Workspace.\n*\n* IWORK (workspace) INTEGER array, dimension (MMAX)\n* Workspace.\n*\n* INFO (output) INTEGER\n* = 0: All intervals converged.\n* = 1--MMAX: The last INFO intervals did not converge.\n* = MMAX+1: More than MMAX intervals were generated.\n*\n\n* Further Details\n* ===============\n*\n* This routine is intended to be called only by other LAPACK\n* routines, thus the interface is less user-friendly. It is intended\n* for two purposes:\n*\n* (a) finding eigenvalues. In this case, SLAEBZ should have one or\n* more initial intervals set up in AB, and SLAEBZ should be called\n* with IJOB=1. This sets up NAB, and also counts the eigenvalues.\n* Intervals with no eigenvalues would usually be thrown out at\n* this point. Also, if not all the eigenvalues in an interval i\n* are desired, NAB(i,1) can be increased or NAB(i,2) decreased.\n* For example, set NAB(i,1)=NAB(i,2)-1 to get the largest\n* eigenvalue. SLAEBZ is then called with IJOB=2 and MMAX\n* no smaller than the value of MOUT returned by the call with\n* IJOB=1. After this (IJOB=2) call, eigenvalues NAB(i,1)+1\n* through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the\n* tolerance specified by ABSTOL and RELTOL.\n*\n* (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l).\n* In this case, start with a Gershgorin interval (a,b). Set up\n* AB to contain 2 search intervals, both initially (a,b). One\n* NVAL element should contain f-1 and the other should contain l\n* , while C should contain a and b, resp. NAB(i,1) should be -1\n* and NAB(i,2) should be N+1, to flag an error if the desired\n* interval does not lie in (a,b). SLAEBZ is then called with\n* IJOB=3. On exit, if w(f-1) < w(f), then one of the intervals --\n* j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while\n* if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r\n* >= 0, then the interval will have N(AB(j,1))=NAB(j,1)=f-k and\n* N(AB(j,2))=NAB(j,2)=f+r. The cases w(l) < w(l+1) and\n* w(l-r)=...=w(l+k) are handled similarly.\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n mout, info, nval, ab, c, nab = NumRu::Lapack.slaebz( ijob, nitmax, minp, nbmin, abstol, reltol, pivmin, d, e, e2, nval, ab, c, nab, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 14 && argc != 14)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 14)", argc);
rblapack_ijob = argv[0];
rblapack_nitmax = argv[1];
rblapack_minp = argv[2];
rblapack_nbmin = argv[3];
rblapack_abstol = argv[4];
rblapack_reltol = argv[5];
rblapack_pivmin = argv[6];
rblapack_d = argv[7];
rblapack_e = argv[8];
rblapack_e2 = argv[9];
rblapack_nval = argv[10];
rblapack_ab = argv[11];
rblapack_c = argv[12];
rblapack_nab = argv[13];
if (argc == 14) {
} else if (rblapack_options != Qnil) {
} else {
}
ijob = NUM2INT(rblapack_ijob);
minp = NUM2INT(rblapack_minp);
abstol = (real)NUM2DBL(rblapack_abstol);
pivmin = (real)NUM2DBL(rblapack_pivmin);
if (!NA_IsNArray(rblapack_e))
rb_raise(rb_eArgError, "e (9th argument) must be NArray");
if (NA_RANK(rblapack_e) != 1)
rb_raise(rb_eArgError, "rank of e (9th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_e);
if (NA_TYPE(rblapack_e) != NA_SFLOAT)
rblapack_e = na_change_type(rblapack_e, NA_SFLOAT);
e = NA_PTR_TYPE(rblapack_e, real*);
if (!NA_IsNArray(rblapack_nval))
rb_raise(rb_eArgError, "nval (11th argument) must be NArray");
if (NA_RANK(rblapack_nval) != 1)
rb_raise(rb_eArgError, "rank of nval (11th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_nval) != ((ijob==1||ijob==2) ? 0 : ijob==3 ? minp : 0))
rb_raise(rb_eRuntimeError, "shape 0 of nval must be %d", (ijob==1||ijob==2) ? 0 : ijob==3 ? minp : 0);
if (NA_TYPE(rblapack_nval) != NA_LINT)
rblapack_nval = na_change_type(rblapack_nval, NA_LINT);
nval = NA_PTR_TYPE(rblapack_nval, integer*);
if (!NA_IsNArray(rblapack_nab))
rb_raise(rb_eArgError, "nab (14th argument) must be NArray");
if (NA_RANK(rblapack_nab) != 2)
rb_raise(rb_eArgError, "rank of nab (14th argument) must be %d", 2);
mmax = NA_SHAPE0(rblapack_nab);
if (NA_SHAPE1(rblapack_nab) != (2))
rb_raise(rb_eRuntimeError, "shape 1 of nab must be %d", 2);
if (NA_TYPE(rblapack_nab) != NA_LINT)
rblapack_nab = na_change_type(rblapack_nab, NA_LINT);
nab = NA_PTR_TYPE(rblapack_nab, integer*);
nitmax = NUM2INT(rblapack_nitmax);
reltol = (real)NUM2DBL(rblapack_reltol);
if (!NA_IsNArray(rblapack_e2))
rb_raise(rb_eArgError, "e2 (10th argument) must be NArray");
if (NA_RANK(rblapack_e2) != 1)
rb_raise(rb_eArgError, "rank of e2 (10th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_e2) != n)
rb_raise(rb_eRuntimeError, "shape 0 of e2 must be the same as shape 0 of e");
if (NA_TYPE(rblapack_e2) != NA_SFLOAT)
rblapack_e2 = na_change_type(rblapack_e2, NA_SFLOAT);
e2 = NA_PTR_TYPE(rblapack_e2, real*);
nbmin = NUM2INT(rblapack_nbmin);
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (12th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (12th argument) must be %d", 2);
if (NA_SHAPE0(rblapack_ab) != mmax)
rb_raise(rb_eRuntimeError, "shape 0 of ab must be the same as shape 0 of nab");
if (NA_SHAPE1(rblapack_ab) != (2))
rb_raise(rb_eRuntimeError, "shape 1 of ab must be %d", 2);
if (NA_TYPE(rblapack_ab) != NA_SFLOAT)
rblapack_ab = na_change_type(rblapack_ab, NA_SFLOAT);
ab = NA_PTR_TYPE(rblapack_ab, real*);
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (8th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (8th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_d) != n)
rb_raise(rb_eRuntimeError, "shape 0 of d must be the same as shape 0 of e");
if (NA_TYPE(rblapack_d) != NA_SFLOAT)
rblapack_d = na_change_type(rblapack_d, NA_SFLOAT);
d = NA_PTR_TYPE(rblapack_d, real*);
if (!NA_IsNArray(rblapack_c))
rb_raise(rb_eArgError, "c (13th argument) must be NArray");
if (NA_RANK(rblapack_c) != 1)
rb_raise(rb_eArgError, "rank of c (13th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_c) != (ijob==1 ? 0 : (ijob==2||ijob==3) ? mmax : 0))
rb_raise(rb_eRuntimeError, "shape 0 of c must be %d", ijob==1 ? 0 : (ijob==2||ijob==3) ? mmax : 0);
if (NA_TYPE(rblapack_c) != NA_SFLOAT)
rblapack_c = na_change_type(rblapack_c, NA_SFLOAT);
c = NA_PTR_TYPE(rblapack_c, real*);
{
na_shape_t shape[1];
shape[0] = (ijob==1||ijob==2) ? 0 : ijob==3 ? minp : 0;
rblapack_nval_out__ = na_make_object(NA_LINT, 1, shape, cNArray);
}
nval_out__ = NA_PTR_TYPE(rblapack_nval_out__, integer*);
MEMCPY(nval_out__, nval, integer, NA_TOTAL(rblapack_nval));
rblapack_nval = rblapack_nval_out__;
nval = nval_out__;
{
na_shape_t shape[2];
shape[0] = mmax;
shape[1] = 2;
rblapack_ab_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, real*);
MEMCPY(ab_out__, ab, real, NA_TOTAL(rblapack_ab));
rblapack_ab = rblapack_ab_out__;
ab = ab_out__;
{
na_shape_t shape[1];
shape[0] = ijob==1 ? 0 : (ijob==2||ijob==3) ? mmax : 0;
rblapack_c_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
c_out__ = NA_PTR_TYPE(rblapack_c_out__, real*);
MEMCPY(c_out__, c, real, NA_TOTAL(rblapack_c));
rblapack_c = rblapack_c_out__;
c = c_out__;
{
na_shape_t shape[2];
shape[0] = mmax;
shape[1] = 2;
rblapack_nab_out__ = na_make_object(NA_LINT, 2, shape, cNArray);
}
nab_out__ = NA_PTR_TYPE(rblapack_nab_out__, integer*);
MEMCPY(nab_out__, nab, integer, NA_TOTAL(rblapack_nab));
rblapack_nab = rblapack_nab_out__;
nab = nab_out__;
work = ALLOC_N(real, (mmax));
iwork = ALLOC_N(integer, (mmax));
slaebz_(&ijob, &nitmax, &n, &mmax, &minp, &nbmin, &abstol, &reltol, &pivmin, d, e, e2, nval, ab, c, &mout, nab, work, iwork, &info);
free(work);
free(iwork);
rblapack_mout = INT2NUM(mout);
rblapack_info = INT2NUM(info);
return rb_ary_new3(6, rblapack_mout, rblapack_info, rblapack_nval, rblapack_ab, rblapack_c, rblapack_nab);
}
void
init_lapack_slaebz(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "slaebz", rblapack_slaebz, -1);
}
|