File: slaed3.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (161 lines) | stat: -rw-r--r-- 9,604 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#include "rb_lapack.h"

extern VOID slaed3_(integer* k, integer* n, integer* n1, real* d, real* q, integer* ldq, real* rho, real* dlamda, real* q2, integer* indx, integer* ctot, real* w, real* s, integer* info);


static VALUE
rblapack_slaed3(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_n1;
  integer n1; 
  VALUE rblapack_rho;
  real rho; 
  VALUE rblapack_dlamda;
  real *dlamda; 
  VALUE rblapack_q2;
  real *q2; 
  VALUE rblapack_indx;
  integer *indx; 
  VALUE rblapack_ctot;
  integer *ctot; 
  VALUE rblapack_w;
  real *w; 
  VALUE rblapack_d;
  real *d; 
  VALUE rblapack_q;
  real *q; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_dlamda_out__;
  real *dlamda_out__;
  VALUE rblapack_w_out__;
  real *w_out__;
  real *s;

  integer k;
  integer n;
  integer ldq;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  d, q, info, dlamda, w = NumRu::Lapack.slaed3( n1, rho, dlamda, q2, indx, ctot, w, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE SLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX, CTOT, W, S, INFO )\n\n*  Purpose\n*  =======\n*\n*  SLAED3 finds the roots of the secular equation, as defined by the\n*  values in D, W, and RHO, between 1 and K.  It makes the\n*  appropriate calls to SLAED4 and then updates the eigenvectors by\n*  multiplying the matrix of eigenvectors of the pair of eigensystems\n*  being combined by the matrix of eigenvectors of the K-by-K system\n*  which is solved here.\n*\n*  This code makes very mild assumptions about floating point\n*  arithmetic. It will work on machines with a guard digit in\n*  add/subtract, or on those binary machines without guard digits\n*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.\n*  It could conceivably fail on hexadecimal or decimal machines\n*  without guard digits, but we know of none.\n*\n\n*  Arguments\n*  =========\n*\n*  K       (input) INTEGER\n*          The number of terms in the rational function to be solved by\n*          SLAED4.  K >= 0.\n*\n*  N       (input) INTEGER\n*          The number of rows and columns in the Q matrix.\n*          N >= K (deflation may result in N>K).\n*\n*  N1      (input) INTEGER\n*          The location of the last eigenvalue in the leading submatrix.\n*          min(1,N) <= N1 <= N/2.\n*\n*  D       (output) REAL array, dimension (N)\n*          D(I) contains the updated eigenvalues for\n*          1 <= I <= K.\n*\n*  Q       (output) REAL array, dimension (LDQ,N)\n*          Initially the first K columns are used as workspace.\n*          On output the columns 1 to K contain\n*          the updated eigenvectors.\n*\n*  LDQ     (input) INTEGER\n*          The leading dimension of the array Q.  LDQ >= max(1,N).\n*\n*  RHO     (input) REAL\n*          The value of the parameter in the rank one update equation.\n*          RHO >= 0 required.\n*\n*  DLAMDA  (input/output) REAL array, dimension (K)\n*          The first K elements of this array contain the old roots\n*          of the deflated updating problem.  These are the poles\n*          of the secular equation. May be changed on output by\n*          having lowest order bit set to zero on Cray X-MP, Cray Y-MP,\n*          Cray-2, or Cray C-90, as described above.\n*\n*  Q2      (input) REAL array, dimension (LDQ2, N)\n*          The first K columns of this matrix contain the non-deflated\n*          eigenvectors for the split problem.\n*\n*  INDX    (input) INTEGER array, dimension (N)\n*          The permutation used to arrange the columns of the deflated\n*          Q matrix into three groups (see SLAED2).\n*          The rows of the eigenvectors found by SLAED4 must be likewise\n*          permuted before the matrix multiply can take place.\n*\n*  CTOT    (input) INTEGER array, dimension (4)\n*          A count of the total number of the various types of columns\n*          in Q, as described in INDX.  The fourth column type is any\n*          column which has been deflated.\n*\n*  W       (input/output) REAL array, dimension (K)\n*          The first K elements of this array contain the components\n*          of the deflation-adjusted updating vector. Destroyed on\n*          output.\n*\n*  S       (workspace) REAL array, dimension (N1 + 1)*K\n*          Will contain the eigenvectors of the repaired matrix which\n*          will be multiplied by the previously accumulated eigenvectors\n*          to update the system.\n*\n*  LDS     (input) INTEGER\n*          The leading dimension of S.  LDS >= max(1,K).\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit.\n*          < 0:  if INFO = -i, the i-th argument had an illegal value.\n*          > 0:  if INFO = 1, an eigenvalue did not converge\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Jeff Rutter, Computer Science Division, University of California\n*     at Berkeley, USA\n*  Modified by Francoise Tisseur, University of Tennessee.\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  d, q, info, dlamda, w = NumRu::Lapack.slaed3( n1, rho, dlamda, q2, indx, ctot, w, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 7 && argc != 7)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 7)", argc);
  rblapack_n1 = argv[0];
  rblapack_rho = argv[1];
  rblapack_dlamda = argv[2];
  rblapack_q2 = argv[3];
  rblapack_indx = argv[4];
  rblapack_ctot = argv[5];
  rblapack_w = argv[6];
  if (argc == 7) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  n1 = NUM2INT(rblapack_n1);
  if (!NA_IsNArray(rblapack_dlamda))
    rb_raise(rb_eArgError, "dlamda (3th argument) must be NArray");
  if (NA_RANK(rblapack_dlamda) != 1)
    rb_raise(rb_eArgError, "rank of dlamda (3th argument) must be %d", 1);
  k = NA_SHAPE0(rblapack_dlamda);
  if (NA_TYPE(rblapack_dlamda) != NA_SFLOAT)
    rblapack_dlamda = na_change_type(rblapack_dlamda, NA_SFLOAT);
  dlamda = NA_PTR_TYPE(rblapack_dlamda, real*);
  if (!NA_IsNArray(rblapack_indx))
    rb_raise(rb_eArgError, "indx (5th argument) must be NArray");
  if (NA_RANK(rblapack_indx) != 1)
    rb_raise(rb_eArgError, "rank of indx (5th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_indx);
  if (NA_TYPE(rblapack_indx) != NA_LINT)
    rblapack_indx = na_change_type(rblapack_indx, NA_LINT);
  indx = NA_PTR_TYPE(rblapack_indx, integer*);
  if (!NA_IsNArray(rblapack_w))
    rb_raise(rb_eArgError, "w (7th argument) must be NArray");
  if (NA_RANK(rblapack_w) != 1)
    rb_raise(rb_eArgError, "rank of w (7th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_w) != k)
    rb_raise(rb_eRuntimeError, "shape 0 of w must be the same as shape 0 of dlamda");
  if (NA_TYPE(rblapack_w) != NA_SFLOAT)
    rblapack_w = na_change_type(rblapack_w, NA_SFLOAT);
  w = NA_PTR_TYPE(rblapack_w, real*);
  rho = (real)NUM2DBL(rblapack_rho);
  if (!NA_IsNArray(rblapack_ctot))
    rb_raise(rb_eArgError, "ctot (6th argument) must be NArray");
  if (NA_RANK(rblapack_ctot) != 1)
    rb_raise(rb_eArgError, "rank of ctot (6th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_ctot) != (4))
    rb_raise(rb_eRuntimeError, "shape 0 of ctot must be %d", 4);
  if (NA_TYPE(rblapack_ctot) != NA_LINT)
    rblapack_ctot = na_change_type(rblapack_ctot, NA_LINT);
  ctot = NA_PTR_TYPE(rblapack_ctot, integer*);
  if (!NA_IsNArray(rblapack_q2))
    rb_raise(rb_eArgError, "q2 (4th argument) must be NArray");
  if (NA_RANK(rblapack_q2) != 2)
    rb_raise(rb_eArgError, "rank of q2 (4th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_q2) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of q2 must be the same as shape 0 of indx");
  if (NA_SHAPE1(rblapack_q2) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of q2 must be the same as shape 0 of indx");
  if (NA_TYPE(rblapack_q2) != NA_SFLOAT)
    rblapack_q2 = na_change_type(rblapack_q2, NA_SFLOAT);
  q2 = NA_PTR_TYPE(rblapack_q2, real*);
  ldq = MAX(1,n);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_d = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  d = NA_PTR_TYPE(rblapack_d, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldq;
    shape[1] = n;
    rblapack_q = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  q = NA_PTR_TYPE(rblapack_q, real*);
  {
    na_shape_t shape[1];
    shape[0] = k;
    rblapack_dlamda_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  dlamda_out__ = NA_PTR_TYPE(rblapack_dlamda_out__, real*);
  MEMCPY(dlamda_out__, dlamda, real, NA_TOTAL(rblapack_dlamda));
  rblapack_dlamda = rblapack_dlamda_out__;
  dlamda = dlamda_out__;
  {
    na_shape_t shape[1];
    shape[0] = k;
    rblapack_w_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  w_out__ = NA_PTR_TYPE(rblapack_w_out__, real*);
  MEMCPY(w_out__, w, real, NA_TOTAL(rblapack_w));
  rblapack_w = rblapack_w_out__;
  w = w_out__;
  s = ALLOC_N(real, (MAX(1,k))*(n1 + 1));

  slaed3_(&k, &n, &n1, d, q, &ldq, &rho, dlamda, q2, indx, ctot, w, s, &info);

  free(s);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(5, rblapack_d, rblapack_q, rblapack_info, rblapack_dlamda, rblapack_w);
}

void
init_lapack_slaed3(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "slaed3", rblapack_slaed3, -1);
}