1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
|
#include "rb_lapack.h"
extern VOID slaic1_(integer* job, integer* j, real* x, real* sest, real* w, real* gamma, real* sestpr, real* s, real* c);
static VALUE
rblapack_slaic1(int argc, VALUE *argv, VALUE self){
VALUE rblapack_job;
integer job;
VALUE rblapack_x;
real *x;
VALUE rblapack_sest;
real sest;
VALUE rblapack_w;
real *w;
VALUE rblapack_gamma;
real gamma;
VALUE rblapack_sestpr;
real sestpr;
VALUE rblapack_s;
real s;
VALUE rblapack_c;
real c;
integer j;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n sestpr, s, c = NumRu::Lapack.slaic1( job, x, sest, w, gamma, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )\n\n* Purpose\n* =======\n*\n* SLAIC1 applies one step of incremental condition estimation in\n* its simplest version:\n*\n* Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j\n* lower triangular matrix L, such that\n* twonorm(L*x) = sest\n* Then SLAIC1 computes sestpr, s, c such that\n* the vector\n* [ s*x ]\n* xhat = [ c ]\n* is an approximate singular vector of\n* [ L 0 ]\n* Lhat = [ w' gamma ]\n* in the sense that\n* twonorm(Lhat*xhat) = sestpr.\n*\n* Depending on JOB, an estimate for the largest or smallest singular\n* value is computed.\n*\n* Note that [s c]' and sestpr**2 is an eigenpair of the system\n*\n* diag(sest*sest, 0) + [alpha gamma] * [ alpha ]\n* [ gamma ]\n*\n* where alpha = x'*w.\n*\n\n* Arguments\n* =========\n*\n* JOB (input) INTEGER\n* = 1: an estimate for the largest singular value is computed.\n* = 2: an estimate for the smallest singular value is computed.\n*\n* J (input) INTEGER\n* Length of X and W\n*\n* X (input) REAL array, dimension (J)\n* The j-vector x.\n*\n* SEST (input) REAL\n* Estimated singular value of j by j matrix L\n*\n* W (input) REAL array, dimension (J)\n* The j-vector w.\n*\n* GAMMA (input) REAL\n* The diagonal element gamma.\n*\n* SESTPR (output) REAL\n* Estimated singular value of (j+1) by (j+1) matrix Lhat.\n*\n* S (output) REAL\n* Sine needed in forming xhat.\n*\n* C (output) REAL\n* Cosine needed in forming xhat.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n sestpr, s, c = NumRu::Lapack.slaic1( job, x, sest, w, gamma, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_job = argv[0];
rblapack_x = argv[1];
rblapack_sest = argv[2];
rblapack_w = argv[3];
rblapack_gamma = argv[4];
if (argc == 5) {
} else if (rblapack_options != Qnil) {
} else {
}
job = NUM2INT(rblapack_job);
sest = (real)NUM2DBL(rblapack_sest);
gamma = (real)NUM2DBL(rblapack_gamma);
if (!NA_IsNArray(rblapack_x))
rb_raise(rb_eArgError, "x (2th argument) must be NArray");
if (NA_RANK(rblapack_x) != 1)
rb_raise(rb_eArgError, "rank of x (2th argument) must be %d", 1);
j = NA_SHAPE0(rblapack_x);
if (NA_TYPE(rblapack_x) != NA_SFLOAT)
rblapack_x = na_change_type(rblapack_x, NA_SFLOAT);
x = NA_PTR_TYPE(rblapack_x, real*);
if (!NA_IsNArray(rblapack_w))
rb_raise(rb_eArgError, "w (4th argument) must be NArray");
if (NA_RANK(rblapack_w) != 1)
rb_raise(rb_eArgError, "rank of w (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_w) != j)
rb_raise(rb_eRuntimeError, "shape 0 of w must be the same as shape 0 of x");
if (NA_TYPE(rblapack_w) != NA_SFLOAT)
rblapack_w = na_change_type(rblapack_w, NA_SFLOAT);
w = NA_PTR_TYPE(rblapack_w, real*);
slaic1_(&job, &j, x, &sest, w, &gamma, &sestpr, &s, &c);
rblapack_sestpr = rb_float_new((double)sestpr);
rblapack_s = rb_float_new((double)s);
rblapack_c = rb_float_new((double)c);
return rb_ary_new3(3, rblapack_sestpr, rblapack_s, rblapack_c);
}
void
init_lapack_slaic1(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "slaic1", rblapack_slaic1, -1);
}
|