File: slaic1.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (89 lines) | stat: -rw-r--r-- 4,645 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#include "rb_lapack.h"

extern VOID slaic1_(integer* job, integer* j, real* x, real* sest, real* w, real* gamma, real* sestpr, real* s, real* c);


static VALUE
rblapack_slaic1(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_job;
  integer job; 
  VALUE rblapack_x;
  real *x; 
  VALUE rblapack_sest;
  real sest; 
  VALUE rblapack_w;
  real *w; 
  VALUE rblapack_gamma;
  real gamma; 
  VALUE rblapack_sestpr;
  real sestpr; 
  VALUE rblapack_s;
  real s; 
  VALUE rblapack_c;
  real c; 

  integer j;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  sestpr, s, c = NumRu::Lapack.slaic1( job, x, sest, w, gamma, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE SLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )\n\n*  Purpose\n*  =======\n*\n*  SLAIC1 applies one step of incremental condition estimation in\n*  its simplest version:\n*\n*  Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j\n*  lower triangular matrix L, such that\n*           twonorm(L*x) = sest\n*  Then SLAIC1 computes sestpr, s, c such that\n*  the vector\n*                  [ s*x ]\n*           xhat = [  c  ]\n*  is an approximate singular vector of\n*                  [ L     0  ]\n*           Lhat = [ w' gamma ]\n*  in the sense that\n*           twonorm(Lhat*xhat) = sestpr.\n*\n*  Depending on JOB, an estimate for the largest or smallest singular\n*  value is computed.\n*\n*  Note that [s c]' and sestpr**2 is an eigenpair of the system\n*\n*      diag(sest*sest, 0) + [alpha  gamma] * [ alpha ]\n*                                            [ gamma ]\n*\n*  where  alpha =  x'*w.\n*\n\n*  Arguments\n*  =========\n*\n*  JOB     (input) INTEGER\n*          = 1: an estimate for the largest singular value is computed.\n*          = 2: an estimate for the smallest singular value is computed.\n*\n*  J       (input) INTEGER\n*          Length of X and W\n*\n*  X       (input) REAL array, dimension (J)\n*          The j-vector x.\n*\n*  SEST    (input) REAL\n*          Estimated singular value of j by j matrix L\n*\n*  W       (input) REAL array, dimension (J)\n*          The j-vector w.\n*\n*  GAMMA   (input) REAL\n*          The diagonal element gamma.\n*\n*  SESTPR  (output) REAL\n*          Estimated singular value of (j+1) by (j+1) matrix Lhat.\n*\n*  S       (output) REAL\n*          Sine needed in forming xhat.\n*\n*  C       (output) REAL\n*          Cosine needed in forming xhat.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  sestpr, s, c = NumRu::Lapack.slaic1( job, x, sest, w, gamma, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 5 && argc != 5)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
  rblapack_job = argv[0];
  rblapack_x = argv[1];
  rblapack_sest = argv[2];
  rblapack_w = argv[3];
  rblapack_gamma = argv[4];
  if (argc == 5) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  job = NUM2INT(rblapack_job);
  sest = (real)NUM2DBL(rblapack_sest);
  gamma = (real)NUM2DBL(rblapack_gamma);
  if (!NA_IsNArray(rblapack_x))
    rb_raise(rb_eArgError, "x (2th argument) must be NArray");
  if (NA_RANK(rblapack_x) != 1)
    rb_raise(rb_eArgError, "rank of x (2th argument) must be %d", 1);
  j = NA_SHAPE0(rblapack_x);
  if (NA_TYPE(rblapack_x) != NA_SFLOAT)
    rblapack_x = na_change_type(rblapack_x, NA_SFLOAT);
  x = NA_PTR_TYPE(rblapack_x, real*);
  if (!NA_IsNArray(rblapack_w))
    rb_raise(rb_eArgError, "w (4th argument) must be NArray");
  if (NA_RANK(rblapack_w) != 1)
    rb_raise(rb_eArgError, "rank of w (4th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_w) != j)
    rb_raise(rb_eRuntimeError, "shape 0 of w must be the same as shape 0 of x");
  if (NA_TYPE(rblapack_w) != NA_SFLOAT)
    rblapack_w = na_change_type(rblapack_w, NA_SFLOAT);
  w = NA_PTR_TYPE(rblapack_w, real*);

  slaic1_(&job, &j, x, &sest, w, &gamma, &sestpr, &s, &c);

  rblapack_sestpr = rb_float_new((double)sestpr);
  rblapack_s = rb_float_new((double)s);
  rblapack_c = rb_float_new((double)c);
  return rb_ary_new3(3, rblapack_sestpr, rblapack_s, rblapack_c);
}

void
init_lapack_slaic1(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "slaic1", rblapack_slaic1, -1);
}