1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
#include "rb_lapack.h"
extern VOID slamrg_(integer* n1, integer* n2, real* a, integer* strd1, integer* strd2, integer* index);
static VALUE
rblapack_slamrg(int argc, VALUE *argv, VALUE self){
VALUE rblapack_n1;
integer n1;
VALUE rblapack_n2;
integer n2;
VALUE rblapack_a;
real *a;
VALUE rblapack_strd1;
integer strd1;
VALUE rblapack_strd2;
integer strd2;
VALUE rblapack_index;
integer *index;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n index = NumRu::Lapack.slamrg( n1, n2, a, strd1, strd2, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLAMRG( N1, N2, A, STRD1, STRD2, INDEX )\n\n* Purpose\n* =======\n*\n* SLAMRG will create a permutation list which will merge the elements\n* of A (which is composed of two independently sorted sets) into a\n* single set which is sorted in ascending order.\n*\n\n* Arguments\n* =========\n*\n* N1 (input) INTEGER\n* N2 (input) INTEGER\n* These arguments contain the respective lengths of the two\n* sorted lists to be merged.\n*\n* A (input) REAL array, dimension (N1+N2)\n* The first N1 elements of A contain a list of numbers which\n* are sorted in either ascending or descending order. Likewise\n* for the final N2 elements.\n*\n* STRD1 (input) INTEGER\n* STRD2 (input) INTEGER\n* These are the strides to be taken through the array A.\n* Allowable strides are 1 and -1. They indicate whether a\n* subset of A is sorted in ascending (STRDx = 1) or descending\n* (STRDx = -1) order.\n*\n* INDEX (output) INTEGER array, dimension (N1+N2)\n* On exit this array will contain a permutation such that\n* if B( I ) = A( INDEX( I ) ) for I=1,N1+N2, then B will be\n* sorted in ascending order.\n*\n\n* =====================================================================\n*\n* .. Local Scalars ..\n INTEGER I, IND1, IND2, N1SV, N2SV\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n index = NumRu::Lapack.slamrg( n1, n2, a, strd1, strd2, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_n1 = argv[0];
rblapack_n2 = argv[1];
rblapack_a = argv[2];
rblapack_strd1 = argv[3];
rblapack_strd2 = argv[4];
if (argc == 5) {
} else if (rblapack_options != Qnil) {
} else {
}
n1 = NUM2INT(rblapack_n1);
strd1 = NUM2INT(rblapack_strd1);
n2 = NUM2INT(rblapack_n2);
strd2 = NUM2INT(rblapack_strd2);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (3th argument) must be NArray");
if (NA_RANK(rblapack_a) != 1)
rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_a) != (n1+n2))
rb_raise(rb_eRuntimeError, "shape 0 of a must be %d", n1+n2);
if (NA_TYPE(rblapack_a) != NA_SFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
a = NA_PTR_TYPE(rblapack_a, real*);
{
na_shape_t shape[1];
shape[0] = n1+n2;
rblapack_index = na_make_object(NA_LINT, 1, shape, cNArray);
}
index = NA_PTR_TYPE(rblapack_index, integer*);
slamrg_(&n1, &n2, a, &strd1, &strd2, index);
return rblapack_index;
}
void
init_lapack_slamrg(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "slamrg", rblapack_slamrg, -1);
}
|