File: slansp.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (76 lines) | stat: -rw-r--r-- 4,429 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#include "rb_lapack.h"

extern real slansp_(char* norm, char* uplo, integer* n, real* ap, real* work);


static VALUE
rblapack_slansp(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_norm;
  char norm; 
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_n;
  integer n; 
  VALUE rblapack_ap;
  real *ap; 
  VALUE rblapack___out__;
  real __out__; 
  real *work;

  integer lwork;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  __out__ = NumRu::Lapack.slansp( norm, uplo, n, ap, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      REAL             FUNCTION SLANSP( NORM, UPLO, N, AP, WORK )\n\n*  Purpose\n*  =======\n*\n*  SLANSP  returns the value of the one norm,  or the Frobenius norm, or\n*  the  infinity norm,  or the  element of  largest absolute value  of a\n*  real symmetric matrix A,  supplied in packed form.\n*\n*  Description\n*  ===========\n*\n*  SLANSP returns the value\n*\n*     SLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'\n*              (\n*              ( norm1(A),         NORM = '1', 'O' or 'o'\n*              (\n*              ( normI(A),         NORM = 'I' or 'i'\n*              (\n*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'\n*\n*  where  norm1  denotes the  one norm of a matrix (maximum column sum),\n*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and\n*  normF  denotes the  Frobenius norm of a matrix (square root of sum of\n*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.\n*\n\n*  Arguments\n*  =========\n*\n*  NORM    (input) CHARACTER*1\n*          Specifies the value to be returned in SLANSP as described\n*          above.\n*\n*  UPLO    (input) CHARACTER*1\n*          Specifies whether the upper or lower triangular part of the\n*          symmetric matrix A is supplied.\n*          = 'U':  Upper triangular part of A is supplied\n*          = 'L':  Lower triangular part of A is supplied\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.  When N = 0, SLANSP is\n*          set to zero.\n*\n*  AP      (input) REAL array, dimension (N*(N+1)/2)\n*          The upper or lower triangle of the symmetric matrix A, packed\n*          columnwise in a linear array.  The j-th column of A is stored\n*          in the array AP as follows:\n*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.\n*\n*  WORK    (workspace) REAL array, dimension (MAX(1,LWORK)),\n*          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,\n*          WORK is not referenced.\n*\n\n* =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  __out__ = NumRu::Lapack.slansp( norm, uplo, n, ap, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 4 && argc != 4)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
  rblapack_norm = argv[0];
  rblapack_uplo = argv[1];
  rblapack_n = argv[2];
  rblapack_ap = argv[3];
  if (argc == 4) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  norm = StringValueCStr(rblapack_norm)[0];
  n = NUM2INT(rblapack_n);
  lwork = ((lsame_(&norm,"I")) || ((('1') || ('o')))) ? n : 0;
  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_ap))
    rb_raise(rb_eArgError, "ap (4th argument) must be NArray");
  if (NA_RANK(rblapack_ap) != 1)
    rb_raise(rb_eArgError, "rank of ap (4th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_ap) != (n*(n+1)/2))
    rb_raise(rb_eRuntimeError, "shape 0 of ap must be %d", n*(n+1)/2);
  if (NA_TYPE(rblapack_ap) != NA_SFLOAT)
    rblapack_ap = na_change_type(rblapack_ap, NA_SFLOAT);
  ap = NA_PTR_TYPE(rblapack_ap, real*);
  work = ALLOC_N(real, (MAX(1,lwork)));

  __out__ = slansp_(&norm, &uplo, &n, ap, work);

  free(work);
  rblapack___out__ = rb_float_new((double)__out__);
  return rblapack___out__;
}

void
init_lapack_slansp(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "slansp", rblapack_slansp, -1);
}