1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
#include "rb_lapack.h"
extern VOID slaqtr_(logical* ltran, logical* lreal, integer* n, real* t, integer* ldt, real* b, real* w, real* scale, real* x, real* work, integer* info);
static VALUE
rblapack_slaqtr(int argc, VALUE *argv, VALUE self){
VALUE rblapack_ltran;
logical ltran;
VALUE rblapack_lreal;
logical lreal;
VALUE rblapack_t;
real *t;
VALUE rblapack_b;
real *b;
VALUE rblapack_w;
real w;
VALUE rblapack_x;
real *x;
VALUE rblapack_scale;
real scale;
VALUE rblapack_info;
integer info;
VALUE rblapack_x_out__;
real *x_out__;
real *work;
integer ldt;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n scale, info, x = NumRu::Lapack.slaqtr( ltran, lreal, t, b, w, x, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLAQTR( LTRAN, LREAL, N, T, LDT, B, W, SCALE, X, WORK, INFO )\n\n* Purpose\n* =======\n*\n* SLAQTR solves the real quasi-triangular system\n*\n* op(T)*p = scale*c, if LREAL = .TRUE.\n*\n* or the complex quasi-triangular systems\n*\n* op(T + iB)*(p+iq) = scale*(c+id), if LREAL = .FALSE.\n*\n* in real arithmetic, where T is upper quasi-triangular.\n* If LREAL = .FALSE., then the first diagonal block of T must be\n* 1 by 1, B is the specially structured matrix\n*\n* B = [ b(1) b(2) ... b(n) ]\n* [ w ]\n* [ w ]\n* [ . ]\n* [ w ]\n*\n* op(A) = A or A', A' denotes the conjugate transpose of\n* matrix A.\n*\n* On input, X = [ c ]. On output, X = [ p ].\n* [ d ] [ q ]\n*\n* This subroutine is designed for the condition number estimation\n* in routine STRSNA.\n*\n\n* Arguments\n* =========\n*\n* LTRAN (input) LOGICAL\n* On entry, LTRAN specifies the option of conjugate transpose:\n* = .FALSE., op(T+i*B) = T+i*B,\n* = .TRUE., op(T+i*B) = (T+i*B)'.\n*\n* LREAL (input) LOGICAL\n* On entry, LREAL specifies the input matrix structure:\n* = .FALSE., the input is complex\n* = .TRUE., the input is real\n*\n* N (input) INTEGER\n* On entry, N specifies the order of T+i*B. N >= 0.\n*\n* T (input) REAL array, dimension (LDT,N)\n* On entry, T contains a matrix in Schur canonical form.\n* If LREAL = .FALSE., then the first diagonal block of T must\n* be 1 by 1.\n*\n* LDT (input) INTEGER\n* The leading dimension of the matrix T. LDT >= max(1,N).\n*\n* B (input) REAL array, dimension (N)\n* On entry, B contains the elements to form the matrix\n* B as described above.\n* If LREAL = .TRUE., B is not referenced.\n*\n* W (input) REAL\n* On entry, W is the diagonal element of the matrix B.\n* If LREAL = .TRUE., W is not referenced.\n*\n* SCALE (output) REAL\n* On exit, SCALE is the scale factor.\n*\n* X (input/output) REAL array, dimension (2*N)\n* On entry, X contains the right hand side of the system.\n* On exit, X is overwritten by the solution.\n*\n* WORK (workspace) REAL array, dimension (N)\n*\n* INFO (output) INTEGER\n* On exit, INFO is set to\n* 0: successful exit.\n* 1: the some diagonal 1 by 1 block has been perturbed by\n* a small number SMIN to keep nonsingularity.\n* 2: the some diagonal 2 by 2 block has been perturbed by\n* a small number in SLALN2 to keep nonsingularity.\n* NOTE: In the interests of speed, this routine does not\n* check the inputs for errors.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n scale, info, x = NumRu::Lapack.slaqtr( ltran, lreal, t, b, w, x, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_ltran = argv[0];
rblapack_lreal = argv[1];
rblapack_t = argv[2];
rblapack_b = argv[3];
rblapack_w = argv[4];
rblapack_x = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
ltran = (rblapack_ltran == Qtrue);
if (!NA_IsNArray(rblapack_t))
rb_raise(rb_eArgError, "t (3th argument) must be NArray");
if (NA_RANK(rblapack_t) != 2)
rb_raise(rb_eArgError, "rank of t (3th argument) must be %d", 2);
ldt = NA_SHAPE0(rblapack_t);
n = NA_SHAPE1(rblapack_t);
if (NA_TYPE(rblapack_t) != NA_SFLOAT)
rblapack_t = na_change_type(rblapack_t, NA_SFLOAT);
t = NA_PTR_TYPE(rblapack_t, real*);
w = (real)NUM2DBL(rblapack_w);
lreal = (rblapack_lreal == Qtrue);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (4th argument) must be NArray");
if (NA_RANK(rblapack_b) != 1)
rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_b) != n)
rb_raise(rb_eRuntimeError, "shape 0 of b must be the same as shape 1 of t");
if (NA_TYPE(rblapack_b) != NA_SFLOAT)
rblapack_b = na_change_type(rblapack_b, NA_SFLOAT);
b = NA_PTR_TYPE(rblapack_b, real*);
if (!NA_IsNArray(rblapack_x))
rb_raise(rb_eArgError, "x (6th argument) must be NArray");
if (NA_RANK(rblapack_x) != 1)
rb_raise(rb_eArgError, "rank of x (6th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_x) != (2*n))
rb_raise(rb_eRuntimeError, "shape 0 of x must be %d", 2*n);
if (NA_TYPE(rblapack_x) != NA_SFLOAT)
rblapack_x = na_change_type(rblapack_x, NA_SFLOAT);
x = NA_PTR_TYPE(rblapack_x, real*);
{
na_shape_t shape[1];
shape[0] = 2*n;
rblapack_x_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
x_out__ = NA_PTR_TYPE(rblapack_x_out__, real*);
MEMCPY(x_out__, x, real, NA_TOTAL(rblapack_x));
rblapack_x = rblapack_x_out__;
x = x_out__;
work = ALLOC_N(real, (n));
slaqtr_(<ran, &lreal, &n, t, &ldt, b, &w, &scale, x, work, &info);
free(work);
rblapack_scale = rb_float_new((double)scale);
rblapack_info = INT2NUM(info);
return rb_ary_new3(3, rblapack_scale, rblapack_info, rblapack_x);
}
void
init_lapack_slaqtr(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "slaqtr", rblapack_slaqtr, -1);
}
|