File: slarft.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (105 lines) | stat: -rw-r--r-- 6,841 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#include "rb_lapack.h"

extern VOID slarft_(char* direct, char* storev, integer* n, integer* k, real* v, integer* ldv, real* tau, real* t, integer* ldt);


static VALUE
rblapack_slarft(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_direct;
  char direct; 
  VALUE rblapack_storev;
  char storev; 
  VALUE rblapack_n;
  integer n; 
  VALUE rblapack_v;
  real *v; 
  VALUE rblapack_tau;
  real *tau; 
  VALUE rblapack_t;
  real *t; 
  VALUE rblapack_v_out__;
  real *v_out__;

  integer ldv;
  integer k;
  integer ldt;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  t, v = NumRu::Lapack.slarft( direct, storev, n, v, tau, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )\n\n*  Purpose\n*  =======\n*\n*  SLARFT forms the triangular factor T of a real block reflector H\n*  of order n, which is defined as a product of k elementary reflectors.\n*\n*  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;\n*\n*  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.\n*\n*  If STOREV = 'C', the vector which defines the elementary reflector\n*  H(i) is stored in the i-th column of the array V, and\n*\n*     H  =  I - V * T * V'\n*\n*  If STOREV = 'R', the vector which defines the elementary reflector\n*  H(i) is stored in the i-th row of the array V, and\n*\n*     H  =  I - V' * T * V\n*\n\n*  Arguments\n*  =========\n*\n*  DIRECT  (input) CHARACTER*1\n*          Specifies the order in which the elementary reflectors are\n*          multiplied to form the block reflector:\n*          = 'F': H = H(1) H(2) . . . H(k) (Forward)\n*          = 'B': H = H(k) . . . H(2) H(1) (Backward)\n*\n*  STOREV  (input) CHARACTER*1\n*          Specifies how the vectors which define the elementary\n*          reflectors are stored (see also Further Details):\n*          = 'C': columnwise\n*          = 'R': rowwise\n*\n*  N       (input) INTEGER\n*          The order of the block reflector H. N >= 0.\n*\n*  K       (input) INTEGER\n*          The order of the triangular factor T (= the number of\n*          elementary reflectors). K >= 1.\n*\n*  V       (input/output) REAL array, dimension\n*                               (LDV,K) if STOREV = 'C'\n*                               (LDV,N) if STOREV = 'R'\n*          The matrix V. See further details.\n*\n*  LDV     (input) INTEGER\n*          The leading dimension of the array V.\n*          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.\n*\n*  TAU     (input) REAL array, dimension (K)\n*          TAU(i) must contain the scalar factor of the elementary\n*          reflector H(i).\n*\n*  T       (output) REAL array, dimension (LDT,K)\n*          The k by k triangular factor T of the block reflector.\n*          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is\n*          lower triangular. The rest of the array is not used.\n*\n*  LDT     (input) INTEGER\n*          The leading dimension of the array T. LDT >= K.\n*\n\n*  Further Details\n*  ===============\n*\n*  The shape of the matrix V and the storage of the vectors which define\n*  the H(i) is best illustrated by the following example with n = 5 and\n*  k = 3. The elements equal to 1 are not stored; the corresponding\n*  array elements are modified but restored on exit. The rest of the\n*  array is not used.\n*\n*  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':\n*\n*               V = (  1       )                 V = (  1 v1 v1 v1 v1 )\n*                   ( v1  1    )                     (     1 v2 v2 v2 )\n*                   ( v1 v2  1 )                     (        1 v3 v3 )\n*                   ( v1 v2 v3 )\n*                   ( v1 v2 v3 )\n*\n*  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':\n*\n*               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )\n*                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )\n*                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )\n*                   (     1 v3 )\n*                   (        1 )\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  t, v = NumRu::Lapack.slarft( direct, storev, n, v, tau, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 5 && argc != 5)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
  rblapack_direct = argv[0];
  rblapack_storev = argv[1];
  rblapack_n = argv[2];
  rblapack_v = argv[3];
  rblapack_tau = argv[4];
  if (argc == 5) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  direct = StringValueCStr(rblapack_direct)[0];
  n = NUM2INT(rblapack_n);
  if (!NA_IsNArray(rblapack_tau))
    rb_raise(rb_eArgError, "tau (5th argument) must be NArray");
  if (NA_RANK(rblapack_tau) != 1)
    rb_raise(rb_eArgError, "rank of tau (5th argument) must be %d", 1);
  k = NA_SHAPE0(rblapack_tau);
  if (NA_TYPE(rblapack_tau) != NA_SFLOAT)
    rblapack_tau = na_change_type(rblapack_tau, NA_SFLOAT);
  tau = NA_PTR_TYPE(rblapack_tau, real*);
  storev = StringValueCStr(rblapack_storev)[0];
  ldt = k;
  if (!NA_IsNArray(rblapack_v))
    rb_raise(rb_eArgError, "v (4th argument) must be NArray");
  if (NA_RANK(rblapack_v) != 2)
    rb_raise(rb_eArgError, "rank of v (4th argument) must be %d", 2);
  ldv = NA_SHAPE0(rblapack_v);
  if (NA_SHAPE1(rblapack_v) != (lsame_(&storev,"C") ? k : lsame_(&storev,"R") ? n : 0))
    rb_raise(rb_eRuntimeError, "shape 1 of v must be %d", lsame_(&storev,"C") ? k : lsame_(&storev,"R") ? n : 0);
  if (NA_TYPE(rblapack_v) != NA_SFLOAT)
    rblapack_v = na_change_type(rblapack_v, NA_SFLOAT);
  v = NA_PTR_TYPE(rblapack_v, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldt;
    shape[1] = k;
    rblapack_t = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  t = NA_PTR_TYPE(rblapack_t, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldv;
    shape[1] = lsame_(&storev,"C") ? k : lsame_(&storev,"R") ? n : 0;
    rblapack_v_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  v_out__ = NA_PTR_TYPE(rblapack_v_out__, real*);
  MEMCPY(v_out__, v, real, NA_TOTAL(rblapack_v));
  rblapack_v = rblapack_v_out__;
  v = v_out__;

  slarft_(&direct, &storev, &n, &k, v, &ldv, tau, t, &ldt);

  return rb_ary_new3(2, rblapack_t, rblapack_v);
}

void
init_lapack_slarft(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "slarft", rblapack_slarft, -1);
}