1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
#include "rb_lapack.h"
extern VOID slarz_(char* side, integer* m, integer* n, integer* l, real* v, integer* incv, real* tau, real* c, integer* ldc, real* work);
static VALUE
rblapack_slarz(int argc, VALUE *argv, VALUE self){
VALUE rblapack_side;
char side;
VALUE rblapack_m;
integer m;
VALUE rblapack_l;
integer l;
VALUE rblapack_v;
real *v;
VALUE rblapack_incv;
integer incv;
VALUE rblapack_tau;
real tau;
VALUE rblapack_c;
real *c;
VALUE rblapack_c_out__;
real *c_out__;
real *work;
integer ldc;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n c = NumRu::Lapack.slarz( side, m, l, v, incv, tau, c, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )\n\n* Purpose\n* =======\n*\n* SLARZ applies a real elementary reflector H to a real M-by-N\n* matrix C, from either the left or the right. H is represented in the\n* form\n*\n* H = I - tau * v * v'\n*\n* where tau is a real scalar and v is a real vector.\n*\n* If tau = 0, then H is taken to be the unit matrix.\n*\n*\n* H is a product of k elementary reflectors as returned by STZRZF.\n*\n\n* Arguments\n* =========\n*\n* SIDE (input) CHARACTER*1\n* = 'L': form H * C\n* = 'R': form C * H\n*\n* M (input) INTEGER\n* The number of rows of the matrix C.\n*\n* N (input) INTEGER\n* The number of columns of the matrix C.\n*\n* L (input) INTEGER\n* The number of entries of the vector V containing\n* the meaningful part of the Householder vectors.\n* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.\n*\n* V (input) REAL array, dimension (1+(L-1)*abs(INCV))\n* The vector v in the representation of H as returned by\n* STZRZF. V is not used if TAU = 0.\n*\n* INCV (input) INTEGER\n* The increment between elements of v. INCV <> 0.\n*\n* TAU (input) REAL\n* The value tau in the representation of H.\n*\n* C (input/output) REAL array, dimension (LDC,N)\n* On entry, the M-by-N matrix C.\n* On exit, C is overwritten by the matrix H * C if SIDE = 'L',\n* or C * H if SIDE = 'R'.\n*\n* LDC (input) INTEGER\n* The leading dimension of the array C. LDC >= max(1,M).\n*\n* WORK (workspace) REAL array, dimension\n* (N) if SIDE = 'L'\n* or (M) if SIDE = 'R'\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n c = NumRu::Lapack.slarz( side, m, l, v, incv, tau, c, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 7 && argc != 7)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 7)", argc);
rblapack_side = argv[0];
rblapack_m = argv[1];
rblapack_l = argv[2];
rblapack_v = argv[3];
rblapack_incv = argv[4];
rblapack_tau = argv[5];
rblapack_c = argv[6];
if (argc == 7) {
} else if (rblapack_options != Qnil) {
} else {
}
side = StringValueCStr(rblapack_side)[0];
l = NUM2INT(rblapack_l);
incv = NUM2INT(rblapack_incv);
if (!NA_IsNArray(rblapack_c))
rb_raise(rb_eArgError, "c (7th argument) must be NArray");
if (NA_RANK(rblapack_c) != 2)
rb_raise(rb_eArgError, "rank of c (7th argument) must be %d", 2);
ldc = NA_SHAPE0(rblapack_c);
n = NA_SHAPE1(rblapack_c);
if (NA_TYPE(rblapack_c) != NA_SFLOAT)
rblapack_c = na_change_type(rblapack_c, NA_SFLOAT);
c = NA_PTR_TYPE(rblapack_c, real*);
m = NUM2INT(rblapack_m);
tau = (real)NUM2DBL(rblapack_tau);
if (!NA_IsNArray(rblapack_v))
rb_raise(rb_eArgError, "v (4th argument) must be NArray");
if (NA_RANK(rblapack_v) != 1)
rb_raise(rb_eArgError, "rank of v (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_v) != (1+(l-1)*abs(incv)))
rb_raise(rb_eRuntimeError, "shape 0 of v must be %d", 1+(l-1)*abs(incv));
if (NA_TYPE(rblapack_v) != NA_SFLOAT)
rblapack_v = na_change_type(rblapack_v, NA_SFLOAT);
v = NA_PTR_TYPE(rblapack_v, real*);
{
na_shape_t shape[2];
shape[0] = ldc;
shape[1] = n;
rblapack_c_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
c_out__ = NA_PTR_TYPE(rblapack_c_out__, real*);
MEMCPY(c_out__, c, real, NA_TOTAL(rblapack_c));
rblapack_c = rblapack_c_out__;
c = c_out__;
work = ALLOC_N(real, (lsame_(&side,"L") ? n : lsame_(&side,"R") ? m : 0));
slarz_(&side, &m, &n, &l, v, &incv, &tau, c, &ldc, work);
free(work);
return rblapack_c;
}
void
init_lapack_slarz(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "slarz", rblapack_slarz, -1);
}
|