File: slarz.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (105 lines) | stat: -rw-r--r-- 5,206 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#include "rb_lapack.h"

extern VOID slarz_(char* side, integer* m, integer* n, integer* l, real* v, integer* incv, real* tau, real* c, integer* ldc, real* work);


static VALUE
rblapack_slarz(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_side;
  char side; 
  VALUE rblapack_m;
  integer m; 
  VALUE rblapack_l;
  integer l; 
  VALUE rblapack_v;
  real *v; 
  VALUE rblapack_incv;
  integer incv; 
  VALUE rblapack_tau;
  real tau; 
  VALUE rblapack_c;
  real *c; 
  VALUE rblapack_c_out__;
  real *c_out__;
  real *work;

  integer ldc;
  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  c = NumRu::Lapack.slarz( side, m, l, v, incv, tau, c, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE SLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )\n\n*  Purpose\n*  =======\n*\n*  SLARZ applies a real elementary reflector H to a real M-by-N\n*  matrix C, from either the left or the right. H is represented in the\n*  form\n*\n*        H = I - tau * v * v'\n*\n*  where tau is a real scalar and v is a real vector.\n*\n*  If tau = 0, then H is taken to be the unit matrix.\n*\n*\n*  H is a product of k elementary reflectors as returned by STZRZF.\n*\n\n*  Arguments\n*  =========\n*\n*  SIDE    (input) CHARACTER*1\n*          = 'L': form  H * C\n*          = 'R': form  C * H\n*\n*  M       (input) INTEGER\n*          The number of rows of the matrix C.\n*\n*  N       (input) INTEGER\n*          The number of columns of the matrix C.\n*\n*  L       (input) INTEGER\n*          The number of entries of the vector V containing\n*          the meaningful part of the Householder vectors.\n*          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.\n*\n*  V       (input) REAL array, dimension (1+(L-1)*abs(INCV))\n*          The vector v in the representation of H as returned by\n*          STZRZF. V is not used if TAU = 0.\n*\n*  INCV    (input) INTEGER\n*          The increment between elements of v. INCV <> 0.\n*\n*  TAU     (input) REAL\n*          The value tau in the representation of H.\n*\n*  C       (input/output) REAL array, dimension (LDC,N)\n*          On entry, the M-by-N matrix C.\n*          On exit, C is overwritten by the matrix H * C if SIDE = 'L',\n*          or C * H if SIDE = 'R'.\n*\n*  LDC     (input) INTEGER\n*          The leading dimension of the array C. LDC >= max(1,M).\n*\n*  WORK    (workspace) REAL array, dimension\n*                         (N) if SIDE = 'L'\n*                      or (M) if SIDE = 'R'\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  c = NumRu::Lapack.slarz( side, m, l, v, incv, tau, c, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 7 && argc != 7)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 7)", argc);
  rblapack_side = argv[0];
  rblapack_m = argv[1];
  rblapack_l = argv[2];
  rblapack_v = argv[3];
  rblapack_incv = argv[4];
  rblapack_tau = argv[5];
  rblapack_c = argv[6];
  if (argc == 7) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  side = StringValueCStr(rblapack_side)[0];
  l = NUM2INT(rblapack_l);
  incv = NUM2INT(rblapack_incv);
  if (!NA_IsNArray(rblapack_c))
    rb_raise(rb_eArgError, "c (7th argument) must be NArray");
  if (NA_RANK(rblapack_c) != 2)
    rb_raise(rb_eArgError, "rank of c (7th argument) must be %d", 2);
  ldc = NA_SHAPE0(rblapack_c);
  n = NA_SHAPE1(rblapack_c);
  if (NA_TYPE(rblapack_c) != NA_SFLOAT)
    rblapack_c = na_change_type(rblapack_c, NA_SFLOAT);
  c = NA_PTR_TYPE(rblapack_c, real*);
  m = NUM2INT(rblapack_m);
  tau = (real)NUM2DBL(rblapack_tau);
  if (!NA_IsNArray(rblapack_v))
    rb_raise(rb_eArgError, "v (4th argument) must be NArray");
  if (NA_RANK(rblapack_v) != 1)
    rb_raise(rb_eArgError, "rank of v (4th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_v) != (1+(l-1)*abs(incv)))
    rb_raise(rb_eRuntimeError, "shape 0 of v must be %d", 1+(l-1)*abs(incv));
  if (NA_TYPE(rblapack_v) != NA_SFLOAT)
    rblapack_v = na_change_type(rblapack_v, NA_SFLOAT);
  v = NA_PTR_TYPE(rblapack_v, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldc;
    shape[1] = n;
    rblapack_c_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  c_out__ = NA_PTR_TYPE(rblapack_c_out__, real*);
  MEMCPY(c_out__, c, real, NA_TOTAL(rblapack_c));
  rblapack_c = rblapack_c_out__;
  c = c_out__;
  work = ALLOC_N(real, (lsame_(&side,"L") ? n : lsame_(&side,"R") ? m : 0));

  slarz_(&side, &m, &n, &l, v, &incv, &tau, c, &ldc, work);

  free(work);
  return rblapack_c;
}

void
init_lapack_slarz(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "slarz", rblapack_slarz, -1);
}