1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
#include "rb_lapack.h"
extern VOID slasd3_(integer* nl, integer* nr, integer* sqre, integer* k, real* d, real* q, integer* ldq, real* dsigma, real* u, integer* ldu, real* u2, integer* ldu2, real* vt, integer* ldvt, real* vt2, integer* ldvt2, integer* idxc, integer* ctot, real* z, integer* info);
static VALUE
rblapack_slasd3(int argc, VALUE *argv, VALUE self){
VALUE rblapack_nl;
integer nl;
VALUE rblapack_nr;
integer nr;
VALUE rblapack_sqre;
integer sqre;
VALUE rblapack_dsigma;
real *dsigma;
VALUE rblapack_u2;
real *u2;
VALUE rblapack_vt2;
real *vt2;
VALUE rblapack_idxc;
integer *idxc;
VALUE rblapack_ctot;
integer *ctot;
VALUE rblapack_z;
real *z;
VALUE rblapack_d;
real *d;
VALUE rblapack_u;
real *u;
VALUE rblapack_vt;
real *vt;
VALUE rblapack_info;
integer info;
VALUE rblapack_dsigma_out__;
real *dsigma_out__;
VALUE rblapack_vt2_out__;
real *vt2_out__;
VALUE rblapack_z_out__;
real *z_out__;
real *q;
integer k;
integer ldu2;
integer n;
integer ldvt2;
integer ldu;
integer ldvt;
integer m;
integer ldq;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n d, u, vt, info, dsigma, vt2, z = NumRu::Lapack.slasd3( nl, nr, sqre, dsigma, u2, vt2, idxc, ctot, z, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2, LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z, INFO )\n\n* Purpose\n* =======\n*\n* SLASD3 finds all the square roots of the roots of the secular\n* equation, as defined by the values in D and Z. It makes the\n* appropriate calls to SLASD4 and then updates the singular\n* vectors by matrix multiplication.\n*\n* This code makes very mild assumptions about floating point\n* arithmetic. It will work on machines with a guard digit in\n* add/subtract, or on those binary machines without guard digits\n* which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.\n* It could conceivably fail on hexadecimal or decimal machines\n* without guard digits, but we know of none.\n*\n* SLASD3 is called from SLASD1.\n*\n\n* Arguments\n* =========\n*\n* NL (input) INTEGER\n* The row dimension of the upper block. NL >= 1.\n*\n* NR (input) INTEGER\n* The row dimension of the lower block. NR >= 1.\n*\n* SQRE (input) INTEGER\n* = 0: the lower block is an NR-by-NR square matrix.\n* = 1: the lower block is an NR-by-(NR+1) rectangular matrix.\n*\n* The bidiagonal matrix has N = NL + NR + 1 rows and\n* M = N + SQRE >= N columns.\n*\n* K (input) INTEGER\n* The size of the secular equation, 1 =< K = < N.\n*\n* D (output) REAL array, dimension(K)\n* On exit the square roots of the roots of the secular equation,\n* in ascending order.\n*\n* Q (workspace) REAL array,\n* dimension at least (LDQ,K).\n*\n* LDQ (input) INTEGER\n* The leading dimension of the array Q. LDQ >= K.\n*\n* DSIGMA (input/output) REAL array, dimension(K)\n* The first K elements of this array contain the old roots\n* of the deflated updating problem. These are the poles\n* of the secular equation.\n*\n* U (output) REAL array, dimension (LDU, N)\n* The last N - K columns of this matrix contain the deflated\n* left singular vectors.\n*\n* LDU (input) INTEGER\n* The leading dimension of the array U. LDU >= N.\n*\n* U2 (input) REAL array, dimension (LDU2, N)\n* The first K columns of this matrix contain the non-deflated\n* left singular vectors for the split problem.\n*\n* LDU2 (input) INTEGER\n* The leading dimension of the array U2. LDU2 >= N.\n*\n* VT (output) REAL array, dimension (LDVT, M)\n* The last M - K columns of VT' contain the deflated\n* right singular vectors.\n*\n* LDVT (input) INTEGER\n* The leading dimension of the array VT. LDVT >= N.\n*\n* VT2 (input/output) REAL array, dimension (LDVT2, N)\n* The first K columns of VT2' contain the non-deflated\n* right singular vectors for the split problem.\n*\n* LDVT2 (input) INTEGER\n* The leading dimension of the array VT2. LDVT2 >= N.\n*\n* IDXC (input) INTEGER array, dimension (N)\n* The permutation used to arrange the columns of U (and rows of\n* VT) into three groups: the first group contains non-zero\n* entries only at and above (or before) NL +1; the second\n* contains non-zero entries only at and below (or after) NL+2;\n* and the third is dense. The first column of U and the row of\n* VT are treated separately, however.\n*\n* The rows of the singular vectors found by SLASD4\n* must be likewise permuted before the matrix multiplies can\n* take place.\n*\n* CTOT (input) INTEGER array, dimension (4)\n* A count of the total number of the various types of columns\n* in U (or rows in VT), as described in IDXC. The fourth column\n* type is any column which has been deflated.\n*\n* Z (input/output) REAL array, dimension (K)\n* The first K elements of this array contain the components\n* of the deflation-adjusted updating row vector.\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n* > 0: if INFO = 1, a singular value did not converge\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Ming Gu and Huan Ren, Computer Science Division, University of\n* California at Berkeley, USA\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n d, u, vt, info, dsigma, vt2, z = NumRu::Lapack.slasd3( nl, nr, sqre, dsigma, u2, vt2, idxc, ctot, z, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 9 && argc != 9)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 9)", argc);
rblapack_nl = argv[0];
rblapack_nr = argv[1];
rblapack_sqre = argv[2];
rblapack_dsigma = argv[3];
rblapack_u2 = argv[4];
rblapack_vt2 = argv[5];
rblapack_idxc = argv[6];
rblapack_ctot = argv[7];
rblapack_z = argv[8];
if (argc == 9) {
} else if (rblapack_options != Qnil) {
} else {
}
nl = NUM2INT(rblapack_nl);
sqre = NUM2INT(rblapack_sqre);
if (!NA_IsNArray(rblapack_ctot))
rb_raise(rb_eArgError, "ctot (8th argument) must be NArray");
if (NA_RANK(rblapack_ctot) != 1)
rb_raise(rb_eArgError, "rank of ctot (8th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_ctot) != (4))
rb_raise(rb_eRuntimeError, "shape 0 of ctot must be %d", 4);
if (NA_TYPE(rblapack_ctot) != NA_LINT)
rblapack_ctot = na_change_type(rblapack_ctot, NA_LINT);
ctot = NA_PTR_TYPE(rblapack_ctot, integer*);
nr = NUM2INT(rblapack_nr);
if (!NA_IsNArray(rblapack_z))
rb_raise(rb_eArgError, "z (9th argument) must be NArray");
if (NA_RANK(rblapack_z) != 1)
rb_raise(rb_eArgError, "rank of z (9th argument) must be %d", 1);
k = NA_SHAPE0(rblapack_z);
if (NA_TYPE(rblapack_z) != NA_SFLOAT)
rblapack_z = na_change_type(rblapack_z, NA_SFLOAT);
z = NA_PTR_TYPE(rblapack_z, real*);
n = nl + nr + 1;
ldvt = n;
ldu = n;
if (!NA_IsNArray(rblapack_dsigma))
rb_raise(rb_eArgError, "dsigma (4th argument) must be NArray");
if (NA_RANK(rblapack_dsigma) != 1)
rb_raise(rb_eArgError, "rank of dsigma (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_dsigma) != k)
rb_raise(rb_eRuntimeError, "shape 0 of dsigma must be the same as shape 0 of z");
if (NA_TYPE(rblapack_dsigma) != NA_SFLOAT)
rblapack_dsigma = na_change_type(rblapack_dsigma, NA_SFLOAT);
dsigma = NA_PTR_TYPE(rblapack_dsigma, real*);
if (!NA_IsNArray(rblapack_idxc))
rb_raise(rb_eArgError, "idxc (7th argument) must be NArray");
if (NA_RANK(rblapack_idxc) != 1)
rb_raise(rb_eArgError, "rank of idxc (7th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_idxc) != n)
rb_raise(rb_eRuntimeError, "shape 0 of idxc must be nl + nr + 1");
if (NA_TYPE(rblapack_idxc) != NA_LINT)
rblapack_idxc = na_change_type(rblapack_idxc, NA_LINT);
idxc = NA_PTR_TYPE(rblapack_idxc, integer*);
ldq = k;
ldvt2 = n;
if (!NA_IsNArray(rblapack_vt2))
rb_raise(rb_eArgError, "vt2 (6th argument) must be NArray");
if (NA_RANK(rblapack_vt2) != 2)
rb_raise(rb_eArgError, "rank of vt2 (6th argument) must be %d", 2);
if (NA_SHAPE0(rblapack_vt2) != ldvt2)
rb_raise(rb_eRuntimeError, "shape 0 of vt2 must be n");
if (NA_SHAPE1(rblapack_vt2) != n)
rb_raise(rb_eRuntimeError, "shape 1 of vt2 must be nl + nr + 1");
if (NA_TYPE(rblapack_vt2) != NA_SFLOAT)
rblapack_vt2 = na_change_type(rblapack_vt2, NA_SFLOAT);
vt2 = NA_PTR_TYPE(rblapack_vt2, real*);
ldu2 = n;
if (!NA_IsNArray(rblapack_u2))
rb_raise(rb_eArgError, "u2 (5th argument) must be NArray");
if (NA_RANK(rblapack_u2) != 2)
rb_raise(rb_eArgError, "rank of u2 (5th argument) must be %d", 2);
if (NA_SHAPE0(rblapack_u2) != ldu2)
rb_raise(rb_eRuntimeError, "shape 0 of u2 must be n");
if (NA_SHAPE1(rblapack_u2) != n)
rb_raise(rb_eRuntimeError, "shape 1 of u2 must be nl + nr + 1");
if (NA_TYPE(rblapack_u2) != NA_SFLOAT)
rblapack_u2 = na_change_type(rblapack_u2, NA_SFLOAT);
u2 = NA_PTR_TYPE(rblapack_u2, real*);
m = n+sqre;
{
na_shape_t shape[1];
shape[0] = k;
rblapack_d = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
d = NA_PTR_TYPE(rblapack_d, real*);
{
na_shape_t shape[2];
shape[0] = ldu;
shape[1] = n;
rblapack_u = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
u = NA_PTR_TYPE(rblapack_u, real*);
{
na_shape_t shape[2];
shape[0] = ldvt;
shape[1] = m;
rblapack_vt = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
vt = NA_PTR_TYPE(rblapack_vt, real*);
{
na_shape_t shape[1];
shape[0] = k;
rblapack_dsigma_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
dsigma_out__ = NA_PTR_TYPE(rblapack_dsigma_out__, real*);
MEMCPY(dsigma_out__, dsigma, real, NA_TOTAL(rblapack_dsigma));
rblapack_dsigma = rblapack_dsigma_out__;
dsigma = dsigma_out__;
{
na_shape_t shape[2];
shape[0] = ldvt2;
shape[1] = n;
rblapack_vt2_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
vt2_out__ = NA_PTR_TYPE(rblapack_vt2_out__, real*);
MEMCPY(vt2_out__, vt2, real, NA_TOTAL(rblapack_vt2));
rblapack_vt2 = rblapack_vt2_out__;
vt2 = vt2_out__;
{
na_shape_t shape[1];
shape[0] = k;
rblapack_z_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
z_out__ = NA_PTR_TYPE(rblapack_z_out__, real*);
MEMCPY(z_out__, z, real, NA_TOTAL(rblapack_z));
rblapack_z = rblapack_z_out__;
z = z_out__;
q = ALLOC_N(real, (ldq)*(k));
slasd3_(&nl, &nr, &sqre, &k, d, q, &ldq, dsigma, u, &ldu, u2, &ldu2, vt, &ldvt, vt2, &ldvt2, idxc, ctot, z, &info);
free(q);
rblapack_info = INT2NUM(info);
return rb_ary_new3(7, rblapack_d, rblapack_u, rblapack_vt, rblapack_info, rblapack_dsigma, rblapack_vt2, rblapack_z);
}
void
init_lapack_slasd3(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "slasd3", rblapack_slasd3, -1);
}
|