1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
#include "rb_lapack.h"
extern VOID slasda_(integer* icompq, integer* smlsiz, integer* n, integer* sqre, real* d, real* e, real* u, integer* ldu, real* vt, integer* k, real* difl, real* difr, real* z, real* poles, integer* givptr, integer* givcol, integer* ldgcol, integer* perm, real* givnum, real* c, real* s, real* work, integer* iwork, integer* info);
static VALUE
rblapack_slasda(int argc, VALUE *argv, VALUE self){
VALUE rblapack_icompq;
integer icompq;
VALUE rblapack_smlsiz;
integer smlsiz;
VALUE rblapack_sqre;
integer sqre;
VALUE rblapack_d;
real *d;
VALUE rblapack_e;
real *e;
VALUE rblapack_u;
real *u;
VALUE rblapack_vt;
real *vt;
VALUE rblapack_k;
integer *k;
VALUE rblapack_difl;
real *difl;
VALUE rblapack_difr;
real *difr;
VALUE rblapack_z;
real *z;
VALUE rblapack_poles;
real *poles;
VALUE rblapack_givptr;
integer *givptr;
VALUE rblapack_givcol;
integer *givcol;
VALUE rblapack_perm;
integer *perm;
VALUE rblapack_givnum;
real *givnum;
VALUE rblapack_c;
real *c;
VALUE rblapack_s;
real *s;
VALUE rblapack_info;
integer info;
VALUE rblapack_d_out__;
real *d_out__;
real *work;
integer *iwork;
integer n;
integer ldu;
integer nlvl;
integer ldgcol;
integer m;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n u, vt, k, difl, difr, z, poles, givptr, givcol, perm, givnum, c, s, info, d = NumRu::Lapack.slasda( icompq, smlsiz, sqre, d, e, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* Using a divide and conquer approach, SLASDA computes the singular\n* value decomposition (SVD) of a real upper bidiagonal N-by-M matrix\n* B with diagonal D and offdiagonal E, where M = N + SQRE. The\n* algorithm computes the singular values in the SVD B = U * S * VT.\n* The orthogonal matrices U and VT are optionally computed in\n* compact form.\n*\n* A related subroutine, SLASD0, computes the singular values and\n* the singular vectors in explicit form.\n*\n\n* Arguments\n* =========\n*\n* ICOMPQ (input) INTEGER\n* Specifies whether singular vectors are to be computed\n* in compact form, as follows\n* = 0: Compute singular values only.\n* = 1: Compute singular vectors of upper bidiagonal\n* matrix in compact form.\n*\n* SMLSIZ (input) INTEGER\n* The maximum size of the subproblems at the bottom of the\n* computation tree.\n*\n* N (input) INTEGER\n* The row dimension of the upper bidiagonal matrix. This is\n* also the dimension of the main diagonal array D.\n*\n* SQRE (input) INTEGER\n* Specifies the column dimension of the bidiagonal matrix.\n* = 0: The bidiagonal matrix has column dimension M = N;\n* = 1: The bidiagonal matrix has column dimension M = N + 1.\n*\n* D (input/output) REAL array, dimension ( N )\n* On entry D contains the main diagonal of the bidiagonal\n* matrix. On exit D, if INFO = 0, contains its singular values.\n*\n* E (input) REAL array, dimension ( M-1 )\n* Contains the subdiagonal entries of the bidiagonal matrix.\n* On exit, E has been destroyed.\n*\n* U (output) REAL array,\n* dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced\n* if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left\n* singular vector matrices of all subproblems at the bottom\n* level.\n*\n* LDU (input) INTEGER, LDU = > N.\n* The leading dimension of arrays U, VT, DIFL, DIFR, POLES,\n* GIVNUM, and Z.\n*\n* VT (output) REAL array,\n* dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced\n* if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right\n* singular vector matrices of all subproblems at the bottom\n* level.\n*\n* K (output) INTEGER array, dimension ( N ) \n* if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.\n* If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th\n* secular equation on the computation tree.\n*\n* DIFL (output) REAL array, dimension ( LDU, NLVL ),\n* where NLVL = floor(log_2 (N/SMLSIZ))).\n*\n* DIFR (output) REAL array,\n* dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and\n* dimension ( N ) if ICOMPQ = 0.\n* If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)\n* record distances between singular values on the I-th\n* level and singular values on the (I -1)-th level, and\n* DIFR(1:N, 2 * I ) contains the normalizing factors for\n* the right singular vector matrix. See SLASD8 for details.\n*\n* Z (output) REAL array,\n* dimension ( LDU, NLVL ) if ICOMPQ = 1 and\n* dimension ( N ) if ICOMPQ = 0.\n* The first K elements of Z(1, I) contain the components of\n* the deflation-adjusted updating row vector for subproblems\n* on the I-th level.\n*\n* POLES (output) REAL array,\n* dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced\n* if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and\n* POLES(1, 2*I) contain the new and old singular values\n* involved in the secular equations on the I-th level.\n*\n* GIVPTR (output) INTEGER array,\n* dimension ( N ) if ICOMPQ = 1, and not referenced if\n* ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records\n* the number of Givens rotations performed on the I-th\n* problem on the computation tree.\n*\n* GIVCOL (output) INTEGER array,\n* dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not\n* referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,\n* GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations\n* of Givens rotations performed on the I-th level on the\n* computation tree.\n*\n* LDGCOL (input) INTEGER, LDGCOL = > N.\n* The leading dimension of arrays GIVCOL and PERM.\n*\n* PERM (output) INTEGER array, dimension ( LDGCOL, NLVL ) \n* if ICOMPQ = 1, and not referenced\n* if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records\n* permutations done on the I-th level of the computation tree.\n*\n* GIVNUM (output) REAL array,\n* dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not\n* referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,\n* GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-\n* values of Givens rotations performed on the I-th level on\n* the computation tree.\n*\n* C (output) REAL array,\n* dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.\n* If ICOMPQ = 1 and the I-th subproblem is not square, on exit,\n* C( I ) contains the C-value of a Givens rotation related to\n* the right null space of the I-th subproblem.\n*\n* S (output) REAL array, dimension ( N ) if\n* ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1\n* and the I-th subproblem is not square, on exit, S( I )\n* contains the S-value of a Givens rotation related to\n* the right null space of the I-th subproblem.\n*\n* WORK (workspace) REAL array, dimension\n* (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).\n*\n* IWORK (workspace) INTEGER array, dimension (7*N).\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n* > 0: if INFO = 1, a singular value did not converge\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Ming Gu and Huan Ren, Computer Science Division, University of\n* California at Berkeley, USA\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n u, vt, k, difl, difr, z, poles, givptr, givcol, perm, givnum, c, s, info, d = NumRu::Lapack.slasda( icompq, smlsiz, sqre, d, e, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_icompq = argv[0];
rblapack_smlsiz = argv[1];
rblapack_sqre = argv[2];
rblapack_d = argv[3];
rblapack_e = argv[4];
if (argc == 5) {
} else if (rblapack_options != Qnil) {
} else {
}
icompq = NUM2INT(rblapack_icompq);
sqre = NUM2INT(rblapack_sqre);
smlsiz = NUM2INT(rblapack_smlsiz);
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (4th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (4th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_d);
if (NA_TYPE(rblapack_d) != NA_SFLOAT)
rblapack_d = na_change_type(rblapack_d, NA_SFLOAT);
d = NA_PTR_TYPE(rblapack_d, real*);
m = sqre == 0 ? n : sqre == 1 ? n+1 : 0;
nlvl = floor(1.0/log(2.0)*log((double)n/smlsiz));
if (!NA_IsNArray(rblapack_e))
rb_raise(rb_eArgError, "e (5th argument) must be NArray");
if (NA_RANK(rblapack_e) != 1)
rb_raise(rb_eArgError, "rank of e (5th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_e) != (m-1))
rb_raise(rb_eRuntimeError, "shape 0 of e must be %d", m-1);
if (NA_TYPE(rblapack_e) != NA_SFLOAT)
rblapack_e = na_change_type(rblapack_e, NA_SFLOAT);
e = NA_PTR_TYPE(rblapack_e, real*);
ldgcol = n;
ldu = n;
{
na_shape_t shape[2];
shape[0] = ldu;
shape[1] = MAX(1,smlsiz);
rblapack_u = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
u = NA_PTR_TYPE(rblapack_u, real*);
{
na_shape_t shape[2];
shape[0] = ldu;
shape[1] = smlsiz+1;
rblapack_vt = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
vt = NA_PTR_TYPE(rblapack_vt, real*);
{
na_shape_t shape[1];
shape[0] = icompq == 1 ? n : icompq == 0 ? 1 : 0;
rblapack_k = na_make_object(NA_LINT, 1, shape, cNArray);
}
k = NA_PTR_TYPE(rblapack_k, integer*);
{
na_shape_t shape[2];
shape[0] = ldu;
shape[1] = nlvl;
rblapack_difl = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
difl = NA_PTR_TYPE(rblapack_difl, real*);
{
na_shape_t shape[2];
shape[0] = icompq == 1 ? ldu : icompq == 0 ? n : 0;
shape[1] = icompq == 1 ? 2 * nlvl : 0;
rblapack_difr = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
difr = NA_PTR_TYPE(rblapack_difr, real*);
{
na_shape_t shape[2];
shape[0] = icompq == 1 ? ldu : icompq == 0 ? n : 0;
shape[1] = icompq == 1 ? nlvl : 0;
rblapack_z = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
z = NA_PTR_TYPE(rblapack_z, real*);
{
na_shape_t shape[2];
shape[0] = ldu;
shape[1] = 2 * nlvl;
rblapack_poles = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
poles = NA_PTR_TYPE(rblapack_poles, real*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_givptr = na_make_object(NA_LINT, 1, shape, cNArray);
}
givptr = NA_PTR_TYPE(rblapack_givptr, integer*);
{
na_shape_t shape[2];
shape[0] = ldgcol;
shape[1] = 2 * nlvl;
rblapack_givcol = na_make_object(NA_LINT, 2, shape, cNArray);
}
givcol = NA_PTR_TYPE(rblapack_givcol, integer*);
{
na_shape_t shape[2];
shape[0] = ldgcol;
shape[1] = nlvl;
rblapack_perm = na_make_object(NA_LINT, 2, shape, cNArray);
}
perm = NA_PTR_TYPE(rblapack_perm, integer*);
{
na_shape_t shape[2];
shape[0] = ldu;
shape[1] = 2 * nlvl;
rblapack_givnum = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
givnum = NA_PTR_TYPE(rblapack_givnum, real*);
{
na_shape_t shape[1];
shape[0] = icompq == 1 ? n : icompq == 0 ? 1 : 0;
rblapack_c = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
c = NA_PTR_TYPE(rblapack_c, real*);
{
na_shape_t shape[1];
shape[0] = icompq==1 ? n : icompq==0 ? 1 : 0;
rblapack_s = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
s = NA_PTR_TYPE(rblapack_s, real*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_d_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
d_out__ = NA_PTR_TYPE(rblapack_d_out__, real*);
MEMCPY(d_out__, d, real, NA_TOTAL(rblapack_d));
rblapack_d = rblapack_d_out__;
d = d_out__;
work = ALLOC_N(real, (6 * n + (smlsiz + 1)*(smlsiz + 1)));
iwork = ALLOC_N(integer, (7*n));
slasda_(&icompq, &smlsiz, &n, &sqre, d, e, u, &ldu, vt, k, difl, difr, z, poles, givptr, givcol, &ldgcol, perm, givnum, c, s, work, iwork, &info);
free(work);
free(iwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(15, rblapack_u, rblapack_vt, rblapack_k, rblapack_difl, rblapack_difr, rblapack_z, rblapack_poles, rblapack_givptr, rblapack_givcol, rblapack_perm, rblapack_givnum, rblapack_c, rblapack_s, rblapack_info, rblapack_d);
}
void
init_lapack_slasda(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "slasda", rblapack_slasda, -1);
}
|