1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
#include "rb_lapack.h"
extern VOID slasq2_(integer* n, real* z, integer* info);
static VALUE
rblapack_slasq2(int argc, VALUE *argv, VALUE self){
VALUE rblapack_n;
integer n;
VALUE rblapack_z;
real *z;
VALUE rblapack_info;
integer info;
VALUE rblapack_z_out__;
real *z_out__;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, z = NumRu::Lapack.slasq2( n, z, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLASQ2( N, Z, INFO )\n\n* Purpose\n* =======\n*\n* SLASQ2 computes all the eigenvalues of the symmetric positive \n* definite tridiagonal matrix associated with the qd array Z to high\n* relative accuracy are computed to high relative accuracy, in the\n* absence of denormalization, underflow and overflow.\n*\n* To see the relation of Z to the tridiagonal matrix, let L be a\n* unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and\n* let U be an upper bidiagonal matrix with 1's above and diagonal\n* Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the\n* symmetric tridiagonal to which it is similar.\n*\n* Note : SLASQ2 defines a logical variable, IEEE, which is true\n* on machines which follow ieee-754 floating-point standard in their\n* handling of infinities and NaNs, and false otherwise. This variable\n* is passed to SLASQ3.\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* The number of rows and columns in the matrix. N >= 0.\n*\n* Z (input/output) REAL array, dimension ( 4*N )\n* On entry Z holds the qd array. On exit, entries 1 to N hold\n* the eigenvalues in decreasing order, Z( 2*N+1 ) holds the\n* trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If\n* N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )\n* holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of\n* shifts that failed.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if the i-th argument is a scalar and had an illegal\n* value, then INFO = -i, if the i-th argument is an\n* array and the j-entry had an illegal value, then\n* INFO = -(i*100+j)\n* > 0: the algorithm failed\n* = 1, a split was marked by a positive value in E\n* = 2, current block of Z not diagonalized after 30*N\n* iterations (in inner while loop)\n* = 3, termination criterion of outer while loop not met \n* (program created more than N unreduced blocks)\n*\n\n* Further Details\n* ===============\n* Local Variables: I0:N0 defines a current unreduced segment of Z.\n* The shifts are accumulated in SIGMA. Iteration count is in ITER.\n* Ping-pong is controlled by PP (alternates between 0 and 1).\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, z = NumRu::Lapack.slasq2( n, z, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 2 && argc != 2)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
rblapack_n = argv[0];
rblapack_z = argv[1];
if (argc == 2) {
} else if (rblapack_options != Qnil) {
} else {
}
n = NUM2INT(rblapack_n);
if (!NA_IsNArray(rblapack_z))
rb_raise(rb_eArgError, "z (2th argument) must be NArray");
if (NA_RANK(rblapack_z) != 1)
rb_raise(rb_eArgError, "rank of z (2th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_z) != (4*n))
rb_raise(rb_eRuntimeError, "shape 0 of z must be %d", 4*n);
if (NA_TYPE(rblapack_z) != NA_SFLOAT)
rblapack_z = na_change_type(rblapack_z, NA_SFLOAT);
z = NA_PTR_TYPE(rblapack_z, real*);
{
na_shape_t shape[1];
shape[0] = 4*n;
rblapack_z_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
z_out__ = NA_PTR_TYPE(rblapack_z_out__, real*);
MEMCPY(z_out__, z, real, NA_TOTAL(rblapack_z));
rblapack_z = rblapack_z_out__;
z = z_out__;
slasq2_(&n, z, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_info, rblapack_z);
}
void
init_lapack_slasq2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "slasq2", rblapack_slasq2, -1);
}
|