File: sormbr.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (139 lines) | stat: -rw-r--r-- 9,227 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#include "rb_lapack.h"

extern VOID sormbr_(char* vect, char* side, char* trans, integer* m, integer* n, integer* k, real* a, integer* lda, real* tau, real* c, integer* ldc, real* work, integer* lwork, integer* info);


static VALUE
rblapack_sormbr(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_vect;
  char vect; 
  VALUE rblapack_side;
  char side; 
  VALUE rblapack_trans;
  char trans; 
  VALUE rblapack_m;
  integer m; 
  VALUE rblapack_k;
  integer k; 
  VALUE rblapack_a;
  real *a; 
  VALUE rblapack_tau;
  real *tau; 
  VALUE rblapack_c;
  real *c; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_work;
  real *work; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_c_out__;
  real *c_out__;

  integer lda;
  integer ldc;
  integer n;
  integer nq;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  work, info, c = NumRu::Lapack.sormbr( vect, side, trans, m, k, a, tau, c, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE SORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  If VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C\n*  with\n*                  SIDE = 'L'     SIDE = 'R'\n*  TRANS = 'N':      Q * C          C * Q\n*  TRANS = 'T':      Q**T * C       C * Q**T\n*\n*  If VECT = 'P', SORMBR overwrites the general real M-by-N matrix C\n*  with\n*                  SIDE = 'L'     SIDE = 'R'\n*  TRANS = 'N':      P * C          C * P\n*  TRANS = 'T':      P**T * C       C * P**T\n*\n*  Here Q and P**T are the orthogonal matrices determined by SGEBRD when\n*  reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and\n*  P**T are defined as products of elementary reflectors H(i) and G(i)\n*  respectively.\n*\n*  Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the\n*  order of the orthogonal matrix Q or P**T that is applied.\n*\n*  If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:\n*  if nq >= k, Q = H(1) H(2) . . . H(k);\n*  if nq < k, Q = H(1) H(2) . . . H(nq-1).\n*\n*  If VECT = 'P', A is assumed to have been a K-by-NQ matrix:\n*  if k < nq, P = G(1) G(2) . . . G(k);\n*  if k >= nq, P = G(1) G(2) . . . G(nq-1).\n*\n\n*  Arguments\n*  =========\n*\n*  VECT    (input) CHARACTER*1\n*          = 'Q': apply Q or Q**T;\n*          = 'P': apply P or P**T.\n*\n*  SIDE    (input) CHARACTER*1\n*          = 'L': apply Q, Q**T, P or P**T from the Left;\n*          = 'R': apply Q, Q**T, P or P**T from the Right.\n*\n*  TRANS   (input) CHARACTER*1\n*          = 'N':  No transpose, apply Q  or P;\n*          = 'T':  Transpose, apply Q**T or P**T.\n*\n*  M       (input) INTEGER\n*          The number of rows of the matrix C. M >= 0.\n*\n*  N       (input) INTEGER\n*          The number of columns of the matrix C. N >= 0.\n*\n*  K       (input) INTEGER\n*          If VECT = 'Q', the number of columns in the original\n*          matrix reduced by SGEBRD.\n*          If VECT = 'P', the number of rows in the original\n*          matrix reduced by SGEBRD.\n*          K >= 0.\n*\n*  A       (input) REAL array, dimension\n*                                (LDA,min(nq,K)) if VECT = 'Q'\n*                                (LDA,nq)        if VECT = 'P'\n*          The vectors which define the elementary reflectors H(i) and\n*          G(i), whose products determine the matrices Q and P, as\n*          returned by SGEBRD.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A.\n*          If VECT = 'Q', LDA >= max(1,nq);\n*          if VECT = 'P', LDA >= max(1,min(nq,K)).\n*\n*  TAU     (input) REAL array, dimension (min(nq,K))\n*          TAU(i) must contain the scalar factor of the elementary\n*          reflector H(i) or G(i) which determines Q or P, as returned\n*          by SGEBRD in the array argument TAUQ or TAUP.\n*\n*  C       (input/output) REAL array, dimension (LDC,N)\n*          On entry, the M-by-N matrix C.\n*          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q\n*          or P*C or P**T*C or C*P or C*P**T.\n*\n*  LDC     (input) INTEGER\n*          The leading dimension of the array C. LDC >= max(1,M).\n*\n*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))\n*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The dimension of the array WORK.\n*          If SIDE = 'L', LWORK >= max(1,N);\n*          if SIDE = 'R', LWORK >= max(1,M).\n*          For optimum performance LWORK >= N*NB if SIDE = 'L', and\n*          LWORK >= M*NB if SIDE = 'R', where NB is the optimal\n*          blocksize.\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal size of the WORK array, returns\n*          this value as the first entry of the WORK array, and no error\n*          message related to LWORK is issued by XERBLA.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*\n\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      LOGICAL            APPLYQ, LEFT, LQUERY, NOTRAN\n      CHARACTER          TRANST\n      INTEGER            I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW\n*     ..\n*     .. External Functions ..\n      LOGICAL            LSAME\n      INTEGER            ILAENV\n      EXTERNAL           ILAENV, LSAME\n*     ..\n*     .. External Subroutines ..\n      EXTERNAL           SORMLQ, SORMQR, XERBLA\n*     ..\n*     .. Intrinsic Functions ..\n      INTRINSIC          MAX, MIN\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  work, info, c = NumRu::Lapack.sormbr( vect, side, trans, m, k, a, tau, c, [:lwork => lwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 8 && argc != 9)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
  rblapack_vect = argv[0];
  rblapack_side = argv[1];
  rblapack_trans = argv[2];
  rblapack_m = argv[3];
  rblapack_k = argv[4];
  rblapack_a = argv[5];
  rblapack_tau = argv[6];
  rblapack_c = argv[7];
  if (argc == 9) {
    rblapack_lwork = argv[8];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
  } else {
    rblapack_lwork = Qnil;
  }

  vect = StringValueCStr(rblapack_vect)[0];
  trans = StringValueCStr(rblapack_trans)[0];
  k = NUM2INT(rblapack_k);
  if (!NA_IsNArray(rblapack_c))
    rb_raise(rb_eArgError, "c (8th argument) must be NArray");
  if (NA_RANK(rblapack_c) != 2)
    rb_raise(rb_eArgError, "rank of c (8th argument) must be %d", 2);
  ldc = NA_SHAPE0(rblapack_c);
  n = NA_SHAPE1(rblapack_c);
  if (NA_TYPE(rblapack_c) != NA_SFLOAT)
    rblapack_c = na_change_type(rblapack_c, NA_SFLOAT);
  c = NA_PTR_TYPE(rblapack_c, real*);
  side = StringValueCStr(rblapack_side)[0];
  m = NUM2INT(rblapack_m);
  if (rblapack_lwork == Qnil)
    lwork = lsame_(&side,"L") ? n : lsame_(&side,"R") ? m : 0;
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  nq = lsame_(&side,"L") ? m : lsame_(&side,"R") ? n : 0;
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (6th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (6th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  if (NA_SHAPE1(rblapack_a) != (MIN(nq,k)))
    rb_raise(rb_eRuntimeError, "shape 1 of a must be %d", MIN(nq,k));
  if (NA_TYPE(rblapack_a) != NA_SFLOAT)
    rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
  a = NA_PTR_TYPE(rblapack_a, real*);
  if (!NA_IsNArray(rblapack_tau))
    rb_raise(rb_eArgError, "tau (7th argument) must be NArray");
  if (NA_RANK(rblapack_tau) != 1)
    rb_raise(rb_eArgError, "rank of tau (7th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_tau) != (MIN(nq,k)))
    rb_raise(rb_eRuntimeError, "shape 0 of tau must be %d", MIN(nq,k));
  if (NA_TYPE(rblapack_tau) != NA_SFLOAT)
    rblapack_tau = na_change_type(rblapack_tau, NA_SFLOAT);
  tau = NA_PTR_TYPE(rblapack_tau, real*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldc;
    shape[1] = n;
    rblapack_c_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  c_out__ = NA_PTR_TYPE(rblapack_c_out__, real*);
  MEMCPY(c_out__, c, real, NA_TOTAL(rblapack_c));
  rblapack_c = rblapack_c_out__;
  c = c_out__;

  sormbr_(&vect, &side, &trans, &m, &n, &k, a, &lda, tau, c, &ldc, work, &lwork, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(3, rblapack_work, rblapack_info, rblapack_c);
}

void
init_lapack_sormbr(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "sormbr", rblapack_sormbr, -1);
}