1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
|
#include "rb_lapack.h"
extern VOID spbtrs_(char* uplo, integer* n, integer* kd, integer* nrhs, real* ab, integer* ldab, real* b, integer* ldb, integer* info);
static VALUE
rblapack_spbtrs(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_kd;
integer kd;
VALUE rblapack_ab;
real *ab;
VALUE rblapack_b;
real *b;
VALUE rblapack_info;
integer info;
VALUE rblapack_b_out__;
real *b_out__;
integer ldab;
integer n;
integer ldb;
integer nrhs;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, b = NumRu::Lapack.spbtrs( uplo, kd, ab, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SPBTRS( UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO )\n\n* Purpose\n* =======\n*\n* SPBTRS solves a system of linear equations A*X = B with a symmetric\n* positive definite band matrix A using the Cholesky factorization\n* A = U**T*U or A = L*L**T computed by SPBTRF.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangular factor stored in AB;\n* = 'L': Lower triangular factor stored in AB.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* KD (input) INTEGER\n* The number of superdiagonals of the matrix A if UPLO = 'U',\n* or the number of subdiagonals if UPLO = 'L'. KD >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrix B. NRHS >= 0.\n*\n* AB (input) REAL array, dimension (LDAB,N)\n* The triangular factor U or L from the Cholesky factorization\n* A = U**T*U or A = L*L**T of the band matrix A, stored in the\n* first KD+1 rows of the array. The j-th column of U or L is\n* stored in the j-th column of the array AB as follows:\n* if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;\n* if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).\n*\n* LDAB (input) INTEGER\n* The leading dimension of the array AB. LDAB >= KD+1.\n*\n* B (input/output) REAL array, dimension (LDB,NRHS)\n* On entry, the right hand side matrix B.\n* On exit, the solution matrix X.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* =====================================================================\n*\n* .. Local Scalars ..\n LOGICAL UPPER\n INTEGER J\n* ..\n* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n* ..\n* .. External Subroutines ..\n EXTERNAL STBSV, XERBLA\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC MAX\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, b = NumRu::Lapack.spbtrs( uplo, kd, ab, b, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 4 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
rblapack_uplo = argv[0];
rblapack_kd = argv[1];
rblapack_ab = argv[2];
rblapack_b = argv[3];
if (argc == 4) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (3th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (3th argument) must be %d", 2);
ldab = NA_SHAPE0(rblapack_ab);
n = NA_SHAPE1(rblapack_ab);
if (NA_TYPE(rblapack_ab) != NA_SFLOAT)
rblapack_ab = na_change_type(rblapack_ab, NA_SFLOAT);
ab = NA_PTR_TYPE(rblapack_ab, real*);
kd = NUM2INT(rblapack_kd);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (4th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
nrhs = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_SFLOAT)
rblapack_b = na_change_type(rblapack_b, NA_SFLOAT);
b = NA_PTR_TYPE(rblapack_b, real*);
{
na_shape_t shape[2];
shape[0] = ldb;
shape[1] = nrhs;
rblapack_b_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
b_out__ = NA_PTR_TYPE(rblapack_b_out__, real*);
MEMCPY(b_out__, b, real, NA_TOTAL(rblapack_b));
rblapack_b = rblapack_b_out__;
b = b_out__;
spbtrs_(&uplo, &n, &kd, &nrhs, ab, &ldab, b, &ldb, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_info, rblapack_b);
}
void
init_lapack_spbtrs(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "spbtrs", rblapack_spbtrs, -1);
}
|