1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
|
#include "rb_lapack.h"
extern VOID spotri_(char* uplo, integer* n, real* a, integer* lda, integer* info);
static VALUE
rblapack_spotri(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_a;
real *a;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
real *a_out__;
integer lda;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, a = NumRu::Lapack.spotri( uplo, a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SPOTRI( UPLO, N, A, LDA, INFO )\n\n* Purpose\n* =======\n*\n* SPOTRI computes the inverse of a real symmetric positive definite\n* matrix A using the Cholesky factorization A = U**T*U or A = L*L**T\n* computed by SPOTRF.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* A (input/output) REAL array, dimension (LDA,N)\n* On entry, the triangular factor U or L from the Cholesky\n* factorization A = U**T*U or A = L*L**T, as computed by\n* SPOTRF.\n* On exit, the upper or lower triangle of the (symmetric)\n* inverse of A, overwriting the input factor U or L.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, the (i,i) element of the factor U or L is\n* zero, and the inverse could not be computed.\n*\n\n* =====================================================================\n*\n* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n* ..\n* .. External Subroutines ..\n EXTERNAL SLAUUM, STRTRI, XERBLA\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC MAX\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, a = NumRu::Lapack.spotri( uplo, a, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 2 && argc != 2)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
rblapack_uplo = argv[0];
rblapack_a = argv[1];
if (argc == 2) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (2th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
a = NA_PTR_TYPE(rblapack_a, real*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
spotri_(&uplo, &n, a, &lda, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_info, rblapack_a);
}
void
init_lapack_spotri(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "spotri", rblapack_spotri, -1);
}
|