File: ssbevd.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (140 lines) | stat: -rw-r--r-- 9,057 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#include "rb_lapack.h"

extern VOID ssbevd_(char* jobz, char* uplo, integer* n, integer* kd, real* ab, integer* ldab, real* w, real* z, integer* ldz, real* work, integer* lwork, integer* iwork, integer* liwork, integer* info);


static VALUE
rblapack_ssbevd(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_jobz;
  char jobz; 
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_kd;
  integer kd; 
  VALUE rblapack_ab;
  real *ab; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_liwork;
  integer liwork; 
  VALUE rblapack_w;
  real *w; 
  VALUE rblapack_z;
  real *z; 
  VALUE rblapack_work;
  real *work; 
  VALUE rblapack_iwork;
  integer *iwork; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_ab_out__;
  real *ab_out__;

  integer ldab;
  integer n;
  integer ldz;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  w, z, work, iwork, info, ab = NumRu::Lapack.ssbevd( jobz, uplo, kd, ab, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE SSBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  SSBEVD computes all the eigenvalues and, optionally, eigenvectors of\n*  a real symmetric band matrix A. If eigenvectors are desired, it uses\n*  a divide and conquer algorithm.\n*\n*  The divide and conquer algorithm makes very mild assumptions about\n*  floating point arithmetic. It will work on machines with a guard\n*  digit in add/subtract, or on those binary machines without guard\n*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or\n*  Cray-2. It could conceivably fail on hexadecimal or decimal machines\n*  without guard digits, but we know of none.\n*\n\n*  Arguments\n*  =========\n*\n*  JOBZ    (input) CHARACTER*1\n*          = 'N':  Compute eigenvalues only;\n*          = 'V':  Compute eigenvalues and eigenvectors.\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  Upper triangle of A is stored;\n*          = 'L':  Lower triangle of A is stored.\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  KD      (input) INTEGER\n*          The number of superdiagonals of the matrix A if UPLO = 'U',\n*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.\n*\n*  AB      (input/output) REAL array, dimension (LDAB, N)\n*          On entry, the upper or lower triangle of the symmetric band\n*          matrix A, stored in the first KD+1 rows of the array.  The\n*          j-th column of A is stored in the j-th column of the array AB\n*          as follows:\n*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;\n*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).\n*\n*          On exit, AB is overwritten by values generated during the\n*          reduction to tridiagonal form.  If UPLO = 'U', the first\n*          superdiagonal and the diagonal of the tridiagonal matrix T\n*          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',\n*          the diagonal and first subdiagonal of T are returned in the\n*          first two rows of AB.\n*\n*  LDAB    (input) INTEGER\n*          The leading dimension of the array AB.  LDAB >= KD + 1.\n*\n*  W       (output) REAL array, dimension (N)\n*          If INFO = 0, the eigenvalues in ascending order.\n*\n*  Z       (output) REAL array, dimension (LDZ, N)\n*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal\n*          eigenvectors of the matrix A, with the i-th column of Z\n*          holding the eigenvector associated with W(i).\n*          If JOBZ = 'N', then Z is not referenced.\n*\n*  LDZ     (input) INTEGER\n*          The leading dimension of the array Z.  LDZ >= 1, and if\n*          JOBZ = 'V', LDZ >= max(1,N).\n*\n*  WORK    (workspace/output) REAL array,\n*                                         dimension (LWORK)\n*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The dimension of the array WORK.\n*          IF N <= 1,                LWORK must be at least 1.\n*          If JOBZ  = 'N' and N > 2, LWORK must be at least 2*N.\n*          If JOBZ  = 'V' and N > 2, LWORK must be at least\n*                         ( 1 + 5*N + 2*N**2 ).\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal sizes of the WORK and IWORK\n*          arrays, returns these values as the first entries of the WORK\n*          and IWORK arrays, and no error message related to LWORK or\n*          LIWORK is issued by XERBLA.\n*\n*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.\n*\n*  LIWORK  (input) INTEGER\n*          The dimension of the array LIWORK.\n*          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.\n*          If JOBZ  = 'V' and N > 2, LIWORK must be at least 3 + 5*N.\n*\n*          If LIWORK = -1, then a workspace query is assumed; the\n*          routine only calculates the optimal sizes of the WORK and\n*          IWORK arrays, returns these values as the first entries of\n*          the WORK and IWORK arrays, and no error message related to\n*          LWORK or LIWORK is issued by XERBLA.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*          > 0:  if INFO = i, the algorithm failed to converge; i\n*                off-diagonal elements of an intermediate tridiagonal\n*                form did not converge to zero.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  w, z, work, iwork, info, ab = NumRu::Lapack.ssbevd( jobz, uplo, kd, ab, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 4 && argc != 6)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
  rblapack_jobz = argv[0];
  rblapack_uplo = argv[1];
  rblapack_kd = argv[2];
  rblapack_ab = argv[3];
  if (argc == 6) {
    rblapack_lwork = argv[4];
    rblapack_liwork = argv[5];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
    rblapack_liwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("liwork")));
  } else {
    rblapack_lwork = Qnil;
    rblapack_liwork = Qnil;
  }

  jobz = StringValueCStr(rblapack_jobz)[0];
  kd = NUM2INT(rblapack_kd);
  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (4th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (4th argument) must be %d", 2);
  ldab = NA_SHAPE0(rblapack_ab);
  n = NA_SHAPE1(rblapack_ab);
  if (NA_TYPE(rblapack_ab) != NA_SFLOAT)
    rblapack_ab = na_change_type(rblapack_ab, NA_SFLOAT);
  ab = NA_PTR_TYPE(rblapack_ab, real*);
  if (rblapack_liwork == Qnil)
    liwork = (lsame_(&jobz,"N")||n<=0) ? 1 : lsame_(&jobz,"V") ? 3+5*n : 0;
  else {
    liwork = NUM2INT(rblapack_liwork);
  }
  if (rblapack_lwork == Qnil)
    lwork = n<=0 ? 1 : lsame_(&jobz,"N") ? 2*n : lsame_(&jobz,"V") ? 1+5*n+2*n*n : 0;
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  ldz = lsame_(&jobz,"V") ? MAX(1,n) : 1;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_w = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  w = NA_PTR_TYPE(rblapack_w, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldz;
    shape[1] = n;
    rblapack_z = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  z = NA_PTR_TYPE(rblapack_z, real*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, real*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,liwork);
    rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
  {
    na_shape_t shape[2];
    shape[0] = ldab;
    shape[1] = n;
    rblapack_ab_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, real*);
  MEMCPY(ab_out__, ab, real, NA_TOTAL(rblapack_ab));
  rblapack_ab = rblapack_ab_out__;
  ab = ab_out__;

  ssbevd_(&jobz, &uplo, &n, &kd, ab, &ldab, w, z, &ldz, work, &lwork, iwork, &liwork, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(6, rblapack_w, rblapack_z, rblapack_work, rblapack_iwork, rblapack_info, rblapack_ab);
}

void
init_lapack_ssbevd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "ssbevd", rblapack_ssbevd, -1);
}