File: ssbevx.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (157 lines) | stat: -rw-r--r-- 10,893 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#include "rb_lapack.h"

extern VOID ssbevx_(char* jobz, char* range, char* uplo, integer* n, integer* kd, real* ab, integer* ldab, real* q, integer* ldq, real* vl, real* vu, integer* il, integer* iu, real* abstol, integer* m, real* w, real* z, integer* ldz, real* work, integer* iwork, integer* ifail, integer* info);


static VALUE
rblapack_ssbevx(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_jobz;
  char jobz; 
  VALUE rblapack_range;
  char range; 
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_kd;
  integer kd; 
  VALUE rblapack_ab;
  real *ab; 
  VALUE rblapack_vl;
  real vl; 
  VALUE rblapack_vu;
  real vu; 
  VALUE rblapack_il;
  integer il; 
  VALUE rblapack_iu;
  integer iu; 
  VALUE rblapack_abstol;
  real abstol; 
  VALUE rblapack_q;
  real *q; 
  VALUE rblapack_m;
  integer m; 
  VALUE rblapack_w;
  real *w; 
  VALUE rblapack_z;
  real *z; 
  VALUE rblapack_ifail;
  integer *ifail; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_ab_out__;
  real *ab_out__;
  real *work;
  integer *iwork;

  integer ldab;
  integer n;
  integer ldq;
  integer ldz;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  q, m, w, z, ifail, info, ab = NumRu::Lapack.ssbevx( jobz, range, uplo, kd, ab, vl, vu, il, iu, abstol, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE SSBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )\n\n*  Purpose\n*  =======\n*\n*  SSBEVX computes selected eigenvalues and, optionally, eigenvectors\n*  of a real symmetric band matrix A.  Eigenvalues and eigenvectors can\n*  be selected by specifying either a range of values or a range of\n*  indices for the desired eigenvalues.\n*\n\n*  Arguments\n*  =========\n*\n*  JOBZ    (input) CHARACTER*1\n*          = 'N':  Compute eigenvalues only;\n*          = 'V':  Compute eigenvalues and eigenvectors.\n*\n*  RANGE   (input) CHARACTER*1\n*          = 'A': all eigenvalues will be found;\n*          = 'V': all eigenvalues in the half-open interval (VL,VU]\n*                 will be found;\n*          = 'I': the IL-th through IU-th eigenvalues will be found.\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  Upper triangle of A is stored;\n*          = 'L':  Lower triangle of A is stored.\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  KD      (input) INTEGER\n*          The number of superdiagonals of the matrix A if UPLO = 'U',\n*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.\n*\n*  AB      (input/output) REAL array, dimension (LDAB, N)\n*          On entry, the upper or lower triangle of the symmetric band\n*          matrix A, stored in the first KD+1 rows of the array.  The\n*          j-th column of A is stored in the j-th column of the array AB\n*          as follows:\n*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;\n*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).\n*\n*          On exit, AB is overwritten by values generated during the\n*          reduction to tridiagonal form.  If UPLO = 'U', the first\n*          superdiagonal and the diagonal of the tridiagonal matrix T\n*          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',\n*          the diagonal and first subdiagonal of T are returned in the\n*          first two rows of AB.\n*\n*  LDAB    (input) INTEGER\n*          The leading dimension of the array AB.  LDAB >= KD + 1.\n*\n*  Q       (output) REAL array, dimension (LDQ, N)\n*          If JOBZ = 'V', the N-by-N orthogonal matrix used in the\n*                         reduction to tridiagonal form.\n*          If JOBZ = 'N', the array Q is not referenced.\n*\n*  LDQ     (input) INTEGER\n*          The leading dimension of the array Q.  If JOBZ = 'V', then\n*          LDQ >= max(1,N).\n*\n*  VL      (input) REAL\n*  VU      (input) REAL\n*          If RANGE='V', the lower and upper bounds of the interval to\n*          be searched for eigenvalues. VL < VU.\n*          Not referenced if RANGE = 'A' or 'I'.\n*\n*  IL      (input) INTEGER\n*  IU      (input) INTEGER\n*          If RANGE='I', the indices (in ascending order) of the\n*          smallest and largest eigenvalues to be returned.\n*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.\n*          Not referenced if RANGE = 'A' or 'V'.\n*\n*  ABSTOL  (input) REAL\n*          The absolute error tolerance for the eigenvalues.\n*          An approximate eigenvalue is accepted as converged\n*          when it is determined to lie in an interval [a,b]\n*          of width less than or equal to\n*\n*                  ABSTOL + EPS *   max( |a|,|b| ) ,\n*\n*          where EPS is the machine precision.  If ABSTOL is less than\n*          or equal to zero, then  EPS*|T|  will be used in its place,\n*          where |T| is the 1-norm of the tridiagonal matrix obtained\n*          by reducing AB to tridiagonal form.\n*\n*          Eigenvalues will be computed most accurately when ABSTOL is\n*          set to twice the underflow threshold 2*SLAMCH('S'), not zero.\n*          If this routine returns with INFO>0, indicating that some\n*          eigenvectors did not converge, try setting ABSTOL to\n*          2*SLAMCH('S').\n*\n*          See \"Computing Small Singular Values of Bidiagonal Matrices\n*          with Guaranteed High Relative Accuracy,\" by Demmel and\n*          Kahan, LAPACK Working Note #3.\n*\n*  M       (output) INTEGER\n*          The total number of eigenvalues found.  0 <= M <= N.\n*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.\n*\n*  W       (output) REAL array, dimension (N)\n*          The first M elements contain the selected eigenvalues in\n*          ascending order.\n*\n*  Z       (output) REAL array, dimension (LDZ, max(1,M))\n*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z\n*          contain the orthonormal eigenvectors of the matrix A\n*          corresponding to the selected eigenvalues, with the i-th\n*          column of Z holding the eigenvector associated with W(i).\n*          If an eigenvector fails to converge, then that column of Z\n*          contains the latest approximation to the eigenvector, and the\n*          index of the eigenvector is returned in IFAIL.\n*          If JOBZ = 'N', then Z is not referenced.\n*          Note: the user must ensure that at least max(1,M) columns are\n*          supplied in the array Z; if RANGE = 'V', the exact value of M\n*          is not known in advance and an upper bound must be used.\n*\n*  LDZ     (input) INTEGER\n*          The leading dimension of the array Z.  LDZ >= 1, and if\n*          JOBZ = 'V', LDZ >= max(1,N).\n*\n*  WORK    (workspace) REAL array, dimension (7*N)\n*\n*  IWORK   (workspace) INTEGER array, dimension (5*N)\n*\n*  IFAIL   (output) INTEGER array, dimension (N)\n*          If JOBZ = 'V', then if INFO = 0, the first M elements of\n*          IFAIL are zero.  If INFO > 0, then IFAIL contains the\n*          indices of the eigenvectors that failed to converge.\n*          If JOBZ = 'N', then IFAIL is not referenced.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit.\n*          < 0:  if INFO = -i, the i-th argument had an illegal value.\n*          > 0:  if INFO = i, then i eigenvectors failed to converge.\n*                Their indices are stored in array IFAIL.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  q, m, w, z, ifail, info, ab = NumRu::Lapack.ssbevx( jobz, range, uplo, kd, ab, vl, vu, il, iu, abstol, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 10 && argc != 10)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 10)", argc);
  rblapack_jobz = argv[0];
  rblapack_range = argv[1];
  rblapack_uplo = argv[2];
  rblapack_kd = argv[3];
  rblapack_ab = argv[4];
  rblapack_vl = argv[5];
  rblapack_vu = argv[6];
  rblapack_il = argv[7];
  rblapack_iu = argv[8];
  rblapack_abstol = argv[9];
  if (argc == 10) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  jobz = StringValueCStr(rblapack_jobz)[0];
  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (5th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (5th argument) must be %d", 2);
  ldab = NA_SHAPE0(rblapack_ab);
  n = NA_SHAPE1(rblapack_ab);
  if (NA_TYPE(rblapack_ab) != NA_SFLOAT)
    rblapack_ab = na_change_type(rblapack_ab, NA_SFLOAT);
  ab = NA_PTR_TYPE(rblapack_ab, real*);
  vu = (real)NUM2DBL(rblapack_vu);
  iu = NUM2INT(rblapack_iu);
  ldz = lsame_(&jobz,"V") ? MAX(1,n) : 1;
  ldq = lsame_(&jobz,"V") ? MAX(1,n) : 0;
  range = StringValueCStr(rblapack_range)[0];
  vl = (real)NUM2DBL(rblapack_vl);
  abstol = (real)NUM2DBL(rblapack_abstol);
  kd = NUM2INT(rblapack_kd);
  il = NUM2INT(rblapack_il);
  m = lsame_(&range,"A") ? n : lsame_(&range,"I") ? iu-il+1 : 0;
  {
    na_shape_t shape[2];
    shape[0] = ldq;
    shape[1] = n;
    rblapack_q = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  q = NA_PTR_TYPE(rblapack_q, real*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_w = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  w = NA_PTR_TYPE(rblapack_w, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldz;
    shape[1] = MAX(1,m);
    rblapack_z = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  z = NA_PTR_TYPE(rblapack_z, real*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_ifail = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  ifail = NA_PTR_TYPE(rblapack_ifail, integer*);
  {
    na_shape_t shape[2];
    shape[0] = ldab;
    shape[1] = n;
    rblapack_ab_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, real*);
  MEMCPY(ab_out__, ab, real, NA_TOTAL(rblapack_ab));
  rblapack_ab = rblapack_ab_out__;
  ab = ab_out__;
  work = ALLOC_N(real, (7*n));
  iwork = ALLOC_N(integer, (5*n));

  ssbevx_(&jobz, &range, &uplo, &n, &kd, ab, &ldab, q, &ldq, &vl, &vu, &il, &iu, &abstol, &m, w, z, &ldz, work, iwork, ifail, &info);

  free(work);
  free(iwork);
  rblapack_m = INT2NUM(m);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(7, rblapack_q, rblapack_m, rblapack_w, rblapack_z, rblapack_ifail, rblapack_info, rblapack_ab);
}

void
init_lapack_ssbevx(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "ssbevx", rblapack_ssbevx, -1);
}