File: ssptri.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (89 lines) | stat: -rw-r--r-- 4,641 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#include "rb_lapack.h"

extern VOID ssptri_(char* uplo, integer* n, real* ap, integer* ipiv, real* work, integer* info);


static VALUE
rblapack_ssptri(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_ap;
  real *ap; 
  VALUE rblapack_ipiv;
  integer *ipiv; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_ap_out__;
  real *ap_out__;
  real *work;

  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, ap = NumRu::Lapack.ssptri( uplo, ap, ipiv, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE SSPTRI( UPLO, N, AP, IPIV, WORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  SSPTRI computes the inverse of a real symmetric indefinite matrix\n*  A in packed storage using the factorization A = U*D*U**T or\n*  A = L*D*L**T computed by SSPTRF.\n*\n\n*  Arguments\n*  =========\n*\n*  UPLO    (input) CHARACTER*1\n*          Specifies whether the details of the factorization are stored\n*          as an upper or lower triangular matrix.\n*          = 'U':  Upper triangular, form is A = U*D*U**T;\n*          = 'L':  Lower triangular, form is A = L*D*L**T.\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  AP      (input/output) REAL array, dimension (N*(N+1)/2)\n*          On entry, the block diagonal matrix D and the multipliers\n*          used to obtain the factor U or L as computed by SSPTRF,\n*          stored as a packed triangular matrix.\n*\n*          On exit, if INFO = 0, the (symmetric) inverse of the original\n*          matrix, stored as a packed triangular matrix. The j-th column\n*          of inv(A) is stored in the array AP as follows:\n*          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;\n*          if UPLO = 'L',\n*             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.\n*\n*  IPIV    (input) INTEGER array, dimension (N)\n*          Details of the interchanges and the block structure of D\n*          as determined by SSPTRF.\n*\n*  WORK    (workspace) REAL array, dimension (N)\n*\n*  INFO    (output) INTEGER\n*          = 0: successful exit\n*          < 0: if INFO = -i, the i-th argument had an illegal value\n*          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its\n*               inverse could not be computed.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, ap = NumRu::Lapack.ssptri( uplo, ap, ipiv, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 3 && argc != 3)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
  rblapack_uplo = argv[0];
  rblapack_ap = argv[1];
  rblapack_ipiv = argv[2];
  if (argc == 3) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_ipiv))
    rb_raise(rb_eArgError, "ipiv (3th argument) must be NArray");
  if (NA_RANK(rblapack_ipiv) != 1)
    rb_raise(rb_eArgError, "rank of ipiv (3th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_ipiv);
  if (NA_TYPE(rblapack_ipiv) != NA_LINT)
    rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
  ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
  if (!NA_IsNArray(rblapack_ap))
    rb_raise(rb_eArgError, "ap (2th argument) must be NArray");
  if (NA_RANK(rblapack_ap) != 1)
    rb_raise(rb_eArgError, "rank of ap (2th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_ap) != (n*(n+1)/2))
    rb_raise(rb_eRuntimeError, "shape 0 of ap must be %d", n*(n+1)/2);
  if (NA_TYPE(rblapack_ap) != NA_SFLOAT)
    rblapack_ap = na_change_type(rblapack_ap, NA_SFLOAT);
  ap = NA_PTR_TYPE(rblapack_ap, real*);
  {
    na_shape_t shape[1];
    shape[0] = n*(n+1)/2;
    rblapack_ap_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  ap_out__ = NA_PTR_TYPE(rblapack_ap_out__, real*);
  MEMCPY(ap_out__, ap, real, NA_TOTAL(rblapack_ap));
  rblapack_ap = rblapack_ap_out__;
  ap = ap_out__;
  work = ALLOC_N(real, (n));

  ssptri_(&uplo, &n, ap, ipiv, work, &info);

  free(work);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(2, rblapack_info, rblapack_ap);
}

void
init_lapack_ssptri(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "ssptri", rblapack_ssptri, -1);
}