1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
#include "rb_lapack.h"
extern VOID ssteqr_(char* compz, integer* n, real* d, real* e, real* z, integer* ldz, real* work, integer* info);
static VALUE
rblapack_ssteqr(int argc, VALUE *argv, VALUE self){
VALUE rblapack_compz;
char compz;
VALUE rblapack_d;
real *d;
VALUE rblapack_e;
real *e;
VALUE rblapack_z;
real *z;
VALUE rblapack_info;
integer info;
VALUE rblapack_d_out__;
real *d_out__;
VALUE rblapack_e_out__;
real *e_out__;
VALUE rblapack_z_out__;
real *z_out__;
real *work;
integer n;
integer ldz;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, d, e, z = NumRu::Lapack.ssteqr( compz, d, e, z, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )\n\n* Purpose\n* =======\n*\n* SSTEQR computes all eigenvalues and, optionally, eigenvectors of a\n* symmetric tridiagonal matrix using the implicit QL or QR method.\n* The eigenvectors of a full or band symmetric matrix can also be found\n* if SSYTRD or SSPTRD or SSBTRD has been used to reduce this matrix to\n* tridiagonal form.\n*\n\n* Arguments\n* =========\n*\n* COMPZ (input) CHARACTER*1\n* = 'N': Compute eigenvalues only.\n* = 'V': Compute eigenvalues and eigenvectors of the original\n* symmetric matrix. On entry, Z must contain the\n* orthogonal matrix used to reduce the original matrix\n* to tridiagonal form.\n* = 'I': Compute eigenvalues and eigenvectors of the\n* tridiagonal matrix. Z is initialized to the identity\n* matrix.\n*\n* N (input) INTEGER\n* The order of the matrix. N >= 0.\n*\n* D (input/output) REAL array, dimension (N)\n* On entry, the diagonal elements of the tridiagonal matrix.\n* On exit, if INFO = 0, the eigenvalues in ascending order.\n*\n* E (input/output) REAL array, dimension (N-1)\n* On entry, the (n-1) subdiagonal elements of the tridiagonal\n* matrix.\n* On exit, E has been destroyed.\n*\n* Z (input/output) REAL array, dimension (LDZ, N)\n* On entry, if COMPZ = 'V', then Z contains the orthogonal\n* matrix used in the reduction to tridiagonal form.\n* On exit, if INFO = 0, then if COMPZ = 'V', Z contains the\n* orthonormal eigenvectors of the original symmetric matrix,\n* and if COMPZ = 'I', Z contains the orthonormal eigenvectors\n* of the symmetric tridiagonal matrix.\n* If COMPZ = 'N', then Z is not referenced.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1, and if\n* eigenvectors are desired, then LDZ >= max(1,N).\n*\n* WORK (workspace) REAL array, dimension (max(1,2*N-2))\n* If COMPZ = 'N', then WORK is not referenced.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: the algorithm has failed to find all the eigenvalues in\n* a total of 30*N iterations; if INFO = i, then i\n* elements of E have not converged to zero; on exit, D\n* and E contain the elements of a symmetric tridiagonal\n* matrix which is orthogonally similar to the original\n* matrix.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, d, e, z = NumRu::Lapack.ssteqr( compz, d, e, z, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 4 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
rblapack_compz = argv[0];
rblapack_d = argv[1];
rblapack_e = argv[2];
rblapack_z = argv[3];
if (argc == 4) {
} else if (rblapack_options != Qnil) {
} else {
}
compz = StringValueCStr(rblapack_compz)[0];
if (!NA_IsNArray(rblapack_z))
rb_raise(rb_eArgError, "z (4th argument) must be NArray");
if (NA_RANK(rblapack_z) != 2)
rb_raise(rb_eArgError, "rank of z (4th argument) must be %d", 2);
ldz = NA_SHAPE0(rblapack_z);
n = NA_SHAPE1(rblapack_z);
if (NA_TYPE(rblapack_z) != NA_SFLOAT)
rblapack_z = na_change_type(rblapack_z, NA_SFLOAT);
z = NA_PTR_TYPE(rblapack_z, real*);
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (2th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (2th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_d) != n)
rb_raise(rb_eRuntimeError, "shape 0 of d must be the same as shape 1 of z");
if (NA_TYPE(rblapack_d) != NA_SFLOAT)
rblapack_d = na_change_type(rblapack_d, NA_SFLOAT);
d = NA_PTR_TYPE(rblapack_d, real*);
if (!NA_IsNArray(rblapack_e))
rb_raise(rb_eArgError, "e (3th argument) must be NArray");
if (NA_RANK(rblapack_e) != 1)
rb_raise(rb_eArgError, "rank of e (3th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_e) != (n-1))
rb_raise(rb_eRuntimeError, "shape 0 of e must be %d", n-1);
if (NA_TYPE(rblapack_e) != NA_SFLOAT)
rblapack_e = na_change_type(rblapack_e, NA_SFLOAT);
e = NA_PTR_TYPE(rblapack_e, real*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_d_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
d_out__ = NA_PTR_TYPE(rblapack_d_out__, real*);
MEMCPY(d_out__, d, real, NA_TOTAL(rblapack_d));
rblapack_d = rblapack_d_out__;
d = d_out__;
{
na_shape_t shape[1];
shape[0] = n-1;
rblapack_e_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
e_out__ = NA_PTR_TYPE(rblapack_e_out__, real*);
MEMCPY(e_out__, e, real, NA_TOTAL(rblapack_e));
rblapack_e = rblapack_e_out__;
e = e_out__;
{
na_shape_t shape[2];
shape[0] = ldz;
shape[1] = n;
rblapack_z_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
z_out__ = NA_PTR_TYPE(rblapack_z_out__, real*);
MEMCPY(z_out__, z, real, NA_TOTAL(rblapack_z));
rblapack_z = rblapack_z_out__;
z = z_out__;
work = ALLOC_N(real, (lsame_(&compz,"N") ? 0 : MAX(1,2*n-2)));
ssteqr_(&compz, &n, d, e, z, &ldz, work, &info);
free(work);
rblapack_info = INT2NUM(info);
return rb_ary_new3(4, rblapack_info, rblapack_d, rblapack_e, rblapack_z);
}
void
init_lapack_ssteqr(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "ssteqr", rblapack_ssteqr, -1);
}
|