1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
#include "rb_lapack.h"
extern VOID ssyev_(char* jobz, char* uplo, integer* n, real* a, integer* lda, real* w, real* work, integer* lwork, integer* info);
static VALUE
rblapack_ssyev(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobz;
char jobz;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_a;
real *a;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_w;
real *w;
VALUE rblapack_work;
real *work;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
real *a_out__;
integer lda;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n w, work, info, a = NumRu::Lapack.ssyev( jobz, uplo, a, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )\n\n* Purpose\n* =======\n*\n* SSYEV computes all eigenvalues and, optionally, eigenvectors of a\n* real symmetric matrix A.\n*\n\n* Arguments\n* =========\n*\n* JOBZ (input) CHARACTER*1\n* = 'N': Compute eigenvalues only;\n* = 'V': Compute eigenvalues and eigenvectors.\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* A (input/output) REAL array, dimension (LDA, N)\n* On entry, the symmetric matrix A. If UPLO = 'U', the\n* leading N-by-N upper triangular part of A contains the\n* upper triangular part of the matrix A. If UPLO = 'L',\n* the leading N-by-N lower triangular part of A contains\n* the lower triangular part of the matrix A.\n* On exit, if JOBZ = 'V', then if INFO = 0, A contains the\n* orthonormal eigenvectors of the matrix A.\n* If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')\n* or the upper triangle (if UPLO='U') of A, including the\n* diagonal, is destroyed.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* W (output) REAL array, dimension (N)\n* If INFO = 0, the eigenvalues in ascending order.\n*\n* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The length of the array WORK. LWORK >= max(1,3*N-1).\n* For optimal efficiency, LWORK >= (NB+2)*N,\n* where NB is the blocksize for SSYTRD returned by ILAENV.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, the algorithm failed to converge; i\n* off-diagonal elements of an intermediate tridiagonal\n* form did not converge to zero.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n w, work, info, a = NumRu::Lapack.ssyev( jobz, uplo, a, [:lwork => lwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_jobz = argv[0];
rblapack_uplo = argv[1];
rblapack_a = argv[2];
if (argc == 4) {
rblapack_lwork = argv[3];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
jobz = StringValueCStr(rblapack_jobz)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (3th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
a = NA_PTR_TYPE(rblapack_a, real*);
uplo = StringValueCStr(rblapack_uplo)[0];
if (rblapack_lwork == Qnil)
lwork = 3*n-1;
else {
lwork = NUM2INT(rblapack_lwork);
}
{
na_shape_t shape[1];
shape[0] = n;
rblapack_w = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
w = NA_PTR_TYPE(rblapack_w, real*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, real*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
ssyev_(&jobz, &uplo, &n, a, &lda, w, work, &lwork, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(4, rblapack_w, rblapack_work, rblapack_info, rblapack_a);
}
void
init_lapack_ssyev(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "ssyev", rblapack_ssyev, -1);
}
|