File: stfsm.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (112 lines) | stat: -rw-r--r-- 10,716 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#include "rb_lapack.h"

extern VOID stfsm_(char* transr, char* side, char* uplo, char* trans, char* diag, integer* m, integer* n, real* alpha, real* a, real* b, integer* ldb);


static VALUE
rblapack_stfsm(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_transr;
  char transr; 
  VALUE rblapack_side;
  char side; 
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_trans;
  char trans; 
  VALUE rblapack_diag;
  char diag; 
  VALUE rblapack_m;
  integer m; 
  VALUE rblapack_alpha;
  real alpha; 
  VALUE rblapack_a;
  real *a; 
  VALUE rblapack_b;
  real *b; 
  VALUE rblapack_b_out__;
  real *b_out__;

  integer nt;
  integer ldb;
  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  b = NumRu::Lapack.stfsm( transr, side, uplo, trans, diag, m, alpha, a, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE STFSM( TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A, B, LDB )\n\n*  Purpose\n*  =======\n*\n*  Level 3 BLAS like routine for A in RFP Format.\n*\n*  STFSM  solves the matrix equation\n*\n*     op( A )*X = alpha*B  or  X*op( A ) = alpha*B\n*\n*  where alpha is a scalar, X and B are m by n matrices, A is a unit, or\n*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of\n*\n*     op( A ) = A   or   op( A ) = A'.\n*\n*  A is in Rectangular Full Packed (RFP) Format.\n*\n*  The matrix X is overwritten on B.\n*\n\n*  Arguments\n*  ==========\n*\n*  TRANSR  (input) CHARACTER*1\n*          = 'N':  The Normal Form of RFP A is stored;\n*          = 'T':  The Transpose Form of RFP A is stored.\n*\n*  SIDE    (input) CHARACTER*1\n*           On entry, SIDE specifies whether op( A ) appears on the left\n*           or right of X as follows:\n*\n*              SIDE = 'L' or 'l'   op( A )*X = alpha*B.\n*\n*              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.\n*\n*           Unchanged on exit.\n*\n*  UPLO    (input) CHARACTER*1\n*           On entry, UPLO specifies whether the RFP matrix A came from\n*           an upper or lower triangular matrix as follows:\n*           UPLO = 'U' or 'u' RFP A came from an upper triangular matrix\n*           UPLO = 'L' or 'l' RFP A came from a  lower triangular matrix\n*\n*           Unchanged on exit.\n*\n*  TRANS   (input) CHARACTER*1\n*           On entry, TRANS  specifies the form of op( A ) to be used\n*           in the matrix multiplication as follows:\n*\n*              TRANS  = 'N' or 'n'   op( A ) = A.\n*\n*              TRANS  = 'T' or 't'   op( A ) = A'.\n*\n*           Unchanged on exit.\n*\n*  DIAG    (input) CHARACTER*1\n*           On entry, DIAG specifies whether or not RFP A is unit\n*           triangular as follows:\n*\n*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.\n*\n*              DIAG = 'N' or 'n'   A is not assumed to be unit\n*                                  triangular.\n*\n*           Unchanged on exit.\n*\n*  M       (input) INTEGER\n*           On entry, M specifies the number of rows of B. M must be at\n*           least zero.\n*           Unchanged on exit.\n*\n*  N       (input) INTEGER\n*           On entry, N specifies the number of columns of B.  N must be\n*           at least zero.\n*           Unchanged on exit.\n*\n*  ALPHA   (input) REAL\n*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is\n*           zero then  A is not referenced and  B need not be set before\n*           entry.\n*           Unchanged on exit.\n*\n*  A       (input) REAL array, dimension (NT)\n*           NT = N*(N+1)/2. On entry, the matrix A in RFP Format.\n*           RFP Format is described by TRANSR, UPLO and N as follows:\n*           If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even;\n*           K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If\n*           TRANSR = 'T' then RFP is the transpose of RFP A as\n*           defined when TRANSR = 'N'. The contents of RFP A are defined\n*           by UPLO as follows: If UPLO = 'U' the RFP A contains the NT\n*           elements of upper packed A either in normal or\n*           transpose Format. If UPLO = 'L' the RFP A contains\n*           the NT elements of lower packed A either in normal or\n*           transpose Format. The LDA of RFP A is (N+1)/2 when\n*           TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is\n*           even and is N when is odd.\n*           See the Note below for more details. Unchanged on exit.\n*\n*  B       (input/output) REAL array,  DIMENSION (LDB,N)\n*           Before entry,  the leading  m by n part of the array  B must\n*           contain  the  right-hand  side  matrix  B,  and  on exit  is\n*           overwritten by the solution matrix  X.\n*\n*  LDB     (input) INTEGER\n*           On entry, LDB specifies the first dimension of B as declared\n*           in  the  calling  (sub)  program.   LDB  must  be  at  least\n*           max( 1, m ).\n*           Unchanged on exit.\n*\n\n*  Further Details\n*  ===============\n*\n*  We first consider Rectangular Full Packed (RFP) Format when N is\n*  even. We give an example where N = 6.\n*\n*      AP is Upper             AP is Lower\n*\n*   00 01 02 03 04 05       00\n*      11 12 13 14 15       10 11\n*         22 23 24 25       20 21 22\n*            33 34 35       30 31 32 33\n*               44 45       40 41 42 43 44\n*                  55       50 51 52 53 54 55\n*\n*\n*  Let TRANSR = 'N'. RFP holds AP as follows:\n*  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last\n*  three columns of AP upper. The lower triangle A(4:6,0:2) consists of\n*  the transpose of the first three columns of AP upper.\n*  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first\n*  three columns of AP lower. The upper triangle A(0:2,0:2) consists of\n*  the transpose of the last three columns of AP lower.\n*  This covers the case N even and TRANSR = 'N'.\n*\n*         RFP A                   RFP A\n*\n*        03 04 05                33 43 53\n*        13 14 15                00 44 54\n*        23 24 25                10 11 55\n*        33 34 35                20 21 22\n*        00 44 45                30 31 32\n*        01 11 55                40 41 42\n*        02 12 22                50 51 52\n*\n*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the\n*  transpose of RFP A above. One therefore gets:\n*\n*\n*           RFP A                   RFP A\n*\n*     03 13 23 33 00 01 02    33 00 10 20 30 40 50\n*     04 14 24 34 44 11 12    43 44 11 21 31 41 51\n*     05 15 25 35 45 55 22    53 54 55 22 32 42 52\n*\n*\n*  We then consider Rectangular Full Packed (RFP) Format when N is\n*  odd. We give an example where N = 5.\n*\n*     AP is Upper                 AP is Lower\n*\n*   00 01 02 03 04              00\n*      11 12 13 14              10 11\n*         22 23 24              20 21 22\n*            33 34              30 31 32 33\n*               44              40 41 42 43 44\n*\n*\n*  Let TRANSR = 'N'. RFP holds AP as follows:\n*  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last\n*  three columns of AP upper. The lower triangle A(3:4,0:1) consists of\n*  the transpose of the first two columns of AP upper.\n*  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first\n*  three columns of AP lower. The upper triangle A(0:1,1:2) consists of\n*  the transpose of the last two columns of AP lower.\n*  This covers the case N odd and TRANSR = 'N'.\n*\n*         RFP A                   RFP A\n*\n*        02 03 04                00 33 43\n*        12 13 14                10 11 44\n*        22 23 24                20 21 22\n*        00 33 34                30 31 32\n*        01 11 44                40 41 42\n*\n*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the\n*  transpose of RFP A above. One therefore gets:\n*\n*           RFP A                   RFP A\n*\n*     02 12 22 00 01             00 10 20 30 40 50\n*     03 13 23 33 11             33 11 21 31 41 51\n*     04 14 24 34 44             43 44 22 32 42 52\n*\n*  Reference\n*  =========\n*\n*  =====================================================================\n*\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  b = NumRu::Lapack.stfsm( transr, side, uplo, trans, diag, m, alpha, a, b, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 9 && argc != 9)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 9)", argc);
  rblapack_transr = argv[0];
  rblapack_side = argv[1];
  rblapack_uplo = argv[2];
  rblapack_trans = argv[3];
  rblapack_diag = argv[4];
  rblapack_m = argv[5];
  rblapack_alpha = argv[6];
  rblapack_a = argv[7];
  rblapack_b = argv[8];
  if (argc == 9) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  transr = StringValueCStr(rblapack_transr)[0];
  uplo = StringValueCStr(rblapack_uplo)[0];
  diag = StringValueCStr(rblapack_diag)[0];
  alpha = (real)NUM2DBL(rblapack_alpha);
  side = StringValueCStr(rblapack_side)[0];
  m = NUM2INT(rblapack_m);
  ldb = MAX(1,m);
  trans = StringValueCStr(rblapack_trans)[0];
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (9th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (9th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_b) != ldb)
    rb_raise(rb_eRuntimeError, "shape 0 of b must be MAX(1,m)");
  n = NA_SHAPE1(rblapack_b);
  if (NA_TYPE(rblapack_b) != NA_SFLOAT)
    rblapack_b = na_change_type(rblapack_b, NA_SFLOAT);
  b = NA_PTR_TYPE(rblapack_b, real*);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (8th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 1)
    rb_raise(rb_eArgError, "rank of a (8th argument) must be %d", 1);
  nt = NA_SHAPE0(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_SFLOAT)
    rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
  a = NA_PTR_TYPE(rblapack_a, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = n;
    rblapack_b_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, real*);
  MEMCPY(b_out__, b, real, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;

  stfsm_(&transr, &side, &uplo, &trans, &diag, &m, &n, &alpha, a, b, &ldb);

  return rblapack_b;
}

void
init_lapack_stfsm(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "stfsm", rblapack_stfsm, -1);
}