1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
|
#include "rb_lapack.h"
extern VOID stfsm_(char* transr, char* side, char* uplo, char* trans, char* diag, integer* m, integer* n, real* alpha, real* a, real* b, integer* ldb);
static VALUE
rblapack_stfsm(int argc, VALUE *argv, VALUE self){
VALUE rblapack_transr;
char transr;
VALUE rblapack_side;
char side;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_trans;
char trans;
VALUE rblapack_diag;
char diag;
VALUE rblapack_m;
integer m;
VALUE rblapack_alpha;
real alpha;
VALUE rblapack_a;
real *a;
VALUE rblapack_b;
real *b;
VALUE rblapack_b_out__;
real *b_out__;
integer nt;
integer ldb;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n b = NumRu::Lapack.stfsm( transr, side, uplo, trans, diag, m, alpha, a, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE STFSM( TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A, B, LDB )\n\n* Purpose\n* =======\n*\n* Level 3 BLAS like routine for A in RFP Format.\n*\n* STFSM solves the matrix equation\n*\n* op( A )*X = alpha*B or X*op( A ) = alpha*B\n*\n* where alpha is a scalar, X and B are m by n matrices, A is a unit, or\n* non-unit, upper or lower triangular matrix and op( A ) is one of\n*\n* op( A ) = A or op( A ) = A'.\n*\n* A is in Rectangular Full Packed (RFP) Format.\n*\n* The matrix X is overwritten on B.\n*\n\n* Arguments\n* ==========\n*\n* TRANSR (input) CHARACTER*1\n* = 'N': The Normal Form of RFP A is stored;\n* = 'T': The Transpose Form of RFP A is stored.\n*\n* SIDE (input) CHARACTER*1\n* On entry, SIDE specifies whether op( A ) appears on the left\n* or right of X as follows:\n*\n* SIDE = 'L' or 'l' op( A )*X = alpha*B.\n*\n* SIDE = 'R' or 'r' X*op( A ) = alpha*B.\n*\n* Unchanged on exit.\n*\n* UPLO (input) CHARACTER*1\n* On entry, UPLO specifies whether the RFP matrix A came from\n* an upper or lower triangular matrix as follows:\n* UPLO = 'U' or 'u' RFP A came from an upper triangular matrix\n* UPLO = 'L' or 'l' RFP A came from a lower triangular matrix\n*\n* Unchanged on exit.\n*\n* TRANS (input) CHARACTER*1\n* On entry, TRANS specifies the form of op( A ) to be used\n* in the matrix multiplication as follows:\n*\n* TRANS = 'N' or 'n' op( A ) = A.\n*\n* TRANS = 'T' or 't' op( A ) = A'.\n*\n* Unchanged on exit.\n*\n* DIAG (input) CHARACTER*1\n* On entry, DIAG specifies whether or not RFP A is unit\n* triangular as follows:\n*\n* DIAG = 'U' or 'u' A is assumed to be unit triangular.\n*\n* DIAG = 'N' or 'n' A is not assumed to be unit\n* triangular.\n*\n* Unchanged on exit.\n*\n* M (input) INTEGER\n* On entry, M specifies the number of rows of B. M must be at\n* least zero.\n* Unchanged on exit.\n*\n* N (input) INTEGER\n* On entry, N specifies the number of columns of B. N must be\n* at least zero.\n* Unchanged on exit.\n*\n* ALPHA (input) REAL\n* On entry, ALPHA specifies the scalar alpha. When alpha is\n* zero then A is not referenced and B need not be set before\n* entry.\n* Unchanged on exit.\n*\n* A (input) REAL array, dimension (NT)\n* NT = N*(N+1)/2. On entry, the matrix A in RFP Format.\n* RFP Format is described by TRANSR, UPLO and N as follows:\n* If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even;\n* K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If\n* TRANSR = 'T' then RFP is the transpose of RFP A as\n* defined when TRANSR = 'N'. The contents of RFP A are defined\n* by UPLO as follows: If UPLO = 'U' the RFP A contains the NT\n* elements of upper packed A either in normal or\n* transpose Format. If UPLO = 'L' the RFP A contains\n* the NT elements of lower packed A either in normal or\n* transpose Format. The LDA of RFP A is (N+1)/2 when\n* TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is\n* even and is N when is odd.\n* See the Note below for more details. Unchanged on exit.\n*\n* B (input/output) REAL array, DIMENSION (LDB,N)\n* Before entry, the leading m by n part of the array B must\n* contain the right-hand side matrix B, and on exit is\n* overwritten by the solution matrix X.\n*\n* LDB (input) INTEGER\n* On entry, LDB specifies the first dimension of B as declared\n* in the calling (sub) program. LDB must be at least\n* max( 1, m ).\n* Unchanged on exit.\n*\n\n* Further Details\n* ===============\n*\n* We first consider Rectangular Full Packed (RFP) Format when N is\n* even. We give an example where N = 6.\n*\n* AP is Upper AP is Lower\n*\n* 00 01 02 03 04 05 00\n* 11 12 13 14 15 10 11\n* 22 23 24 25 20 21 22\n* 33 34 35 30 31 32 33\n* 44 45 40 41 42 43 44\n* 55 50 51 52 53 54 55\n*\n*\n* Let TRANSR = 'N'. RFP holds AP as follows:\n* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last\n* three columns of AP upper. The lower triangle A(4:6,0:2) consists of\n* the transpose of the first three columns of AP upper.\n* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first\n* three columns of AP lower. The upper triangle A(0:2,0:2) consists of\n* the transpose of the last three columns of AP lower.\n* This covers the case N even and TRANSR = 'N'.\n*\n* RFP A RFP A\n*\n* 03 04 05 33 43 53\n* 13 14 15 00 44 54\n* 23 24 25 10 11 55\n* 33 34 35 20 21 22\n* 00 44 45 30 31 32\n* 01 11 55 40 41 42\n* 02 12 22 50 51 52\n*\n* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the\n* transpose of RFP A above. One therefore gets:\n*\n*\n* RFP A RFP A\n*\n* 03 13 23 33 00 01 02 33 00 10 20 30 40 50\n* 04 14 24 34 44 11 12 43 44 11 21 31 41 51\n* 05 15 25 35 45 55 22 53 54 55 22 32 42 52\n*\n*\n* We then consider Rectangular Full Packed (RFP) Format when N is\n* odd. We give an example where N = 5.\n*\n* AP is Upper AP is Lower\n*\n* 00 01 02 03 04 00\n* 11 12 13 14 10 11\n* 22 23 24 20 21 22\n* 33 34 30 31 32 33\n* 44 40 41 42 43 44\n*\n*\n* Let TRANSR = 'N'. RFP holds AP as follows:\n* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last\n* three columns of AP upper. The lower triangle A(3:4,0:1) consists of\n* the transpose of the first two columns of AP upper.\n* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first\n* three columns of AP lower. The upper triangle A(0:1,1:2) consists of\n* the transpose of the last two columns of AP lower.\n* This covers the case N odd and TRANSR = 'N'.\n*\n* RFP A RFP A\n*\n* 02 03 04 00 33 43\n* 12 13 14 10 11 44\n* 22 23 24 20 21 22\n* 00 33 34 30 31 32\n* 01 11 44 40 41 42\n*\n* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the\n* transpose of RFP A above. One therefore gets:\n*\n* RFP A RFP A\n*\n* 02 12 22 00 01 00 10 20 30 40 50\n* 03 13 23 33 11 33 11 21 31 41 51\n* 04 14 24 34 44 43 44 22 32 42 52\n*\n* Reference\n* =========\n*\n* =====================================================================\n*\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n b = NumRu::Lapack.stfsm( transr, side, uplo, trans, diag, m, alpha, a, b, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 9 && argc != 9)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 9)", argc);
rblapack_transr = argv[0];
rblapack_side = argv[1];
rblapack_uplo = argv[2];
rblapack_trans = argv[3];
rblapack_diag = argv[4];
rblapack_m = argv[5];
rblapack_alpha = argv[6];
rblapack_a = argv[7];
rblapack_b = argv[8];
if (argc == 9) {
} else if (rblapack_options != Qnil) {
} else {
}
transr = StringValueCStr(rblapack_transr)[0];
uplo = StringValueCStr(rblapack_uplo)[0];
diag = StringValueCStr(rblapack_diag)[0];
alpha = (real)NUM2DBL(rblapack_alpha);
side = StringValueCStr(rblapack_side)[0];
m = NUM2INT(rblapack_m);
ldb = MAX(1,m);
trans = StringValueCStr(rblapack_trans)[0];
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (9th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (9th argument) must be %d", 2);
if (NA_SHAPE0(rblapack_b) != ldb)
rb_raise(rb_eRuntimeError, "shape 0 of b must be MAX(1,m)");
n = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_SFLOAT)
rblapack_b = na_change_type(rblapack_b, NA_SFLOAT);
b = NA_PTR_TYPE(rblapack_b, real*);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (8th argument) must be NArray");
if (NA_RANK(rblapack_a) != 1)
rb_raise(rb_eArgError, "rank of a (8th argument) must be %d", 1);
nt = NA_SHAPE0(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
a = NA_PTR_TYPE(rblapack_a, real*);
{
na_shape_t shape[2];
shape[0] = ldb;
shape[1] = n;
rblapack_b_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
b_out__ = NA_PTR_TYPE(rblapack_b_out__, real*);
MEMCPY(b_out__, b, real, NA_TOTAL(rblapack_b));
rblapack_b = rblapack_b_out__;
b = b_out__;
stfsm_(&transr, &side, &uplo, &trans, &diag, &m, &n, &alpha, a, b, &ldb);
return rblapack_b;
}
void
init_lapack_stfsm(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "stfsm", rblapack_stfsm, -1);
}
|