File: stgexc.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (191 lines) | stat: -rw-r--r-- 11,139 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#include "rb_lapack.h"

extern VOID stgexc_(logical* wantq, logical* wantz, integer* n, real* a, integer* lda, real* b, integer* ldb, real* q, integer* ldq, real* z, integer* ldz, integer* ifst, integer* ilst, real* work, integer* lwork, integer* info);


static VALUE
rblapack_stgexc(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_wantq;
  logical wantq; 
  VALUE rblapack_wantz;
  logical wantz; 
  VALUE rblapack_a;
  real *a; 
  VALUE rblapack_b;
  real *b; 
  VALUE rblapack_q;
  real *q; 
  VALUE rblapack_ldq;
  integer ldq; 
  VALUE rblapack_z;
  real *z; 
  VALUE rblapack_ifst;
  integer ifst; 
  VALUE rblapack_ilst;
  integer ilst; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_work;
  real *work; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  real *a_out__;
  VALUE rblapack_b_out__;
  real *b_out__;
  VALUE rblapack_q_out__;
  real *q_out__;
  VALUE rblapack_z_out__;
  real *z_out__;

  integer lda;
  integer n;
  integer ldb;
  integer ldz;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  work, info, a, b, q, z, ifst, ilst = NumRu::Lapack.stgexc( wantq, wantz, a, b, q, ldq, z, ifst, ilst, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE STGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, IFST, ILST, WORK, LWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  STGEXC reorders the generalized real Schur decomposition of a real\n*  matrix pair (A,B) using an orthogonal equivalence transformation\n*\n*                 (A, B) = Q * (A, B) * Z',\n*\n*  so that the diagonal block of (A, B) with row index IFST is moved\n*  to row ILST.\n*\n*  (A, B) must be in generalized real Schur canonical form (as returned\n*  by SGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2\n*  diagonal blocks. B is upper triangular.\n*\n*  Optionally, the matrices Q and Z of generalized Schur vectors are\n*  updated.\n*\n*         Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'\n*         Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'\n*\n*\n\n*  Arguments\n*  =========\n*\n*  WANTQ   (input) LOGICAL\n*          .TRUE. : update the left transformation matrix Q;\n*          .FALSE.: do not update Q.\n*\n*  WANTZ   (input) LOGICAL\n*          .TRUE. : update the right transformation matrix Z;\n*          .FALSE.: do not update Z.\n*\n*  N       (input) INTEGER\n*          The order of the matrices A and B. N >= 0.\n*\n*  A       (input/output) REAL array, dimension (LDA,N)\n*          On entry, the matrix A in generalized real Schur canonical\n*          form.\n*          On exit, the updated matrix A, again in generalized\n*          real Schur canonical form.\n*\n*  LDA     (input)  INTEGER\n*          The leading dimension of the array A. LDA >= max(1,N).\n*\n*  B       (input/output) REAL array, dimension (LDB,N)\n*          On entry, the matrix B in generalized real Schur canonical\n*          form (A,B).\n*          On exit, the updated matrix B, again in generalized\n*          real Schur canonical form (A,B).\n*\n*  LDB     (input)  INTEGER\n*          The leading dimension of the array B. LDB >= max(1,N).\n*\n*  Q       (input/output) REAL array, dimension (LDZ,N)\n*          On entry, if WANTQ = .TRUE., the orthogonal matrix Q.\n*          On exit, the updated matrix Q.\n*          If WANTQ = .FALSE., Q is not referenced.\n*\n*  LDQ     (input) INTEGER\n*          The leading dimension of the array Q. LDQ >= 1.\n*          If WANTQ = .TRUE., LDQ >= N.\n*\n*  Z       (input/output) REAL array, dimension (LDZ,N)\n*          On entry, if WANTZ = .TRUE., the orthogonal matrix Z.\n*          On exit, the updated matrix Z.\n*          If WANTZ = .FALSE., Z is not referenced.\n*\n*  LDZ     (input) INTEGER\n*          The leading dimension of the array Z. LDZ >= 1.\n*          If WANTZ = .TRUE., LDZ >= N.\n*\n*  IFST    (input/output) INTEGER\n*  ILST    (input/output) INTEGER\n*          Specify the reordering of the diagonal blocks of (A, B).\n*          The block with row index IFST is moved to row ILST, by a\n*          sequence of swapping between adjacent blocks.\n*          On exit, if IFST pointed on entry to the second row of\n*          a 2-by-2 block, it is changed to point to the first row;\n*          ILST always points to the first row of the block in its\n*          final position (which may differ from its input value by\n*          +1 or -1). 1 <= IFST, ILST <= N.\n*\n*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))\n*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The dimension of the array WORK.\n*          LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16.\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal size of the WORK array, returns\n*          this value as the first entry of the WORK array, and no error\n*          message related to LWORK is issued by XERBLA.\n*\n*  INFO    (output) INTEGER\n*           =0:  successful exit.\n*           <0:  if INFO = -i, the i-th argument had an illegal value.\n*           =1:  The transformed matrix pair (A, B) would be too far\n*                from generalized Schur form; the problem is ill-\n*                conditioned. (A, B) may have been partially reordered,\n*                and ILST points to the first row of the current\n*                position of the block being moved.\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Bo Kagstrom and Peter Poromaa, Department of Computing Science,\n*     Umea University, S-901 87 Umea, Sweden.\n*\n*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the\n*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in\n*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and\n*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  work, info, a, b, q, z, ifst, ilst = NumRu::Lapack.stgexc( wantq, wantz, a, b, q, ldq, z, ifst, ilst, [:lwork => lwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 9 && argc != 10)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 9)", argc);
  rblapack_wantq = argv[0];
  rblapack_wantz = argv[1];
  rblapack_a = argv[2];
  rblapack_b = argv[3];
  rblapack_q = argv[4];
  rblapack_ldq = argv[5];
  rblapack_z = argv[6];
  rblapack_ifst = argv[7];
  rblapack_ilst = argv[8];
  if (argc == 10) {
    rblapack_lwork = argv[9];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
  } else {
    rblapack_lwork = Qnil;
  }

  wantq = (rblapack_wantq == Qtrue);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (3th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_SFLOAT)
    rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
  a = NA_PTR_TYPE(rblapack_a, real*);
  if (!NA_IsNArray(rblapack_q))
    rb_raise(rb_eArgError, "q (5th argument) must be NArray");
  if (NA_RANK(rblapack_q) != 2)
    rb_raise(rb_eArgError, "rank of q (5th argument) must be %d", 2);
  ldz = NA_SHAPE0(rblapack_q);
  if (NA_SHAPE1(rblapack_q) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of q must be the same as shape 1 of a");
  if (NA_TYPE(rblapack_q) != NA_SFLOAT)
    rblapack_q = na_change_type(rblapack_q, NA_SFLOAT);
  q = NA_PTR_TYPE(rblapack_q, real*);
  if (!NA_IsNArray(rblapack_z))
    rb_raise(rb_eArgError, "z (7th argument) must be NArray");
  if (NA_RANK(rblapack_z) != 2)
    rb_raise(rb_eArgError, "rank of z (7th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_z) != ldz)
    rb_raise(rb_eRuntimeError, "shape 0 of z must be the same as shape 0 of q");
  if (NA_SHAPE1(rblapack_z) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of z must be the same as shape 1 of a");
  if (NA_TYPE(rblapack_z) != NA_SFLOAT)
    rblapack_z = na_change_type(rblapack_z, NA_SFLOAT);
  z = NA_PTR_TYPE(rblapack_z, real*);
  ilst = NUM2INT(rblapack_ilst);
  wantz = (rblapack_wantz == Qtrue);
  ldq = NUM2INT(rblapack_ldq);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (4th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  if (NA_SHAPE1(rblapack_b) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of a");
  if (NA_TYPE(rblapack_b) != NA_SFLOAT)
    rblapack_b = na_change_type(rblapack_b, NA_SFLOAT);
  b = NA_PTR_TYPE(rblapack_b, real*);
  if (rblapack_lwork == Qnil)
    lwork = n<=1 ? 1 : 4*n+16;
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  ifst = NUM2INT(rblapack_ifst);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, real*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
  MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = n;
    rblapack_b_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, real*);
  MEMCPY(b_out__, b, real, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldz;
    shape[1] = n;
    rblapack_q_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  q_out__ = NA_PTR_TYPE(rblapack_q_out__, real*);
  MEMCPY(q_out__, q, real, NA_TOTAL(rblapack_q));
  rblapack_q = rblapack_q_out__;
  q = q_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldz;
    shape[1] = n;
    rblapack_z_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  z_out__ = NA_PTR_TYPE(rblapack_z_out__, real*);
  MEMCPY(z_out__, z, real, NA_TOTAL(rblapack_z));
  rblapack_z = rblapack_z_out__;
  z = z_out__;

  stgexc_(&wantq, &wantz, &n, a, &lda, b, &ldb, q, &ldq, z, &ldz, &ifst, &ilst, work, &lwork, &info);

  rblapack_info = INT2NUM(info);
  rblapack_ifst = INT2NUM(ifst);
  rblapack_ilst = INT2NUM(ilst);
  return rb_ary_new3(8, rblapack_work, rblapack_info, rblapack_a, rblapack_b, rblapack_q, rblapack_z, rblapack_ifst, rblapack_ilst);
}

void
init_lapack_stgexc(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "stgexc", rblapack_stgexc, -1);
}