1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
|
#include "rb_lapack.h"
extern VOID strttp_(char* uplo, integer* n, real* a, integer* lda, real* ap, integer* info);
static VALUE
rblapack_strttp(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_a;
real *a;
VALUE rblapack_ap;
real *ap;
VALUE rblapack_info;
integer info;
integer lda;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n ap, info = NumRu::Lapack.strttp( uplo, a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE STRTTP( UPLO, N, A, LDA, AP, INFO )\n\n* Purpose\n* =======\n*\n* STRTTP copies a triangular matrix A from full format (TR) to standard\n* packed format (TP).\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': A is upper triangular.\n* = 'L': A is lower triangular.\n*\n* N (input) INTEGER\n* The order of the matrices AP and A. N >= 0.\n*\n* A (input) REAL array, dimension (LDA,N)\n* On exit, the triangular matrix A. If UPLO = 'U', the leading\n* N-by-N upper triangular part of A contains the upper\n* triangular part of the matrix A, and the strictly lower\n* triangular part of A is not referenced. If UPLO = 'L', the\n* leading N-by-N lower triangular part of A contains the lower\n* triangular part of the matrix A, and the strictly upper\n* triangular part of A is not referenced.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* AP (output) REAL array, dimension (N*(N+1)/2\n* On exit, the upper or lower triangular matrix A, packed\n* columnwise in a linear array. The j-th column of A is stored\n* in the array AP as follows:\n* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n ap, info = NumRu::Lapack.strttp( uplo, a, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 2 && argc != 2)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
rblapack_uplo = argv[0];
rblapack_a = argv[1];
if (argc == 2) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (2th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
a = NA_PTR_TYPE(rblapack_a, real*);
{
na_shape_t shape[1];
shape[0] = n*(n+1)/2;
rblapack_ap = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
ap = NA_PTR_TYPE(rblapack_ap, real*);
strttp_(&uplo, &n, a, &lda, ap, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_ap, rblapack_info);
}
void
init_lapack_strttp(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "strttp", rblapack_strttp, -1);
}
|