File: zgbequb.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (96 lines) | stat: -rw-r--r-- 6,227 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#include "rb_lapack.h"

extern VOID zgbequb_(integer* m, integer* n, integer* kl, integer* ku, doublereal* ab, integer* ldab, doublereal* r, doublereal* c, doublereal* rowcnd, doublereal* colcnd, doublereal* amax, integer* info);


static VALUE
rblapack_zgbequb(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_kl;
  integer kl; 
  VALUE rblapack_ku;
  integer ku; 
  VALUE rblapack_ab;
  doublereal *ab; 
  VALUE rblapack_r;
  doublereal *r; 
  VALUE rblapack_c;
  doublereal *c; 
  VALUE rblapack_rowcnd;
  doublereal rowcnd; 
  VALUE rblapack_colcnd;
  doublereal colcnd; 
  VALUE rblapack_amax;
  doublereal amax; 
  VALUE rblapack_info;
  integer info; 

  integer ldab;
  integer n;
  integer m;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  r, c, rowcnd, colcnd, amax, info = NumRu::Lapack.zgbequb( kl, ku, ab, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZGBEQUB( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, AMAX, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZGBEQUB computes row and column scalings intended to equilibrate an\n*  M-by-N matrix A and reduce its condition number.  R returns the row\n*  scale factors and C the column scale factors, chosen to try to make\n*  the largest element in each row and column of the matrix B with\n*  elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most\n*  the radix.\n*\n*  R(i) and C(j) are restricted to be a power of the radix between\n*  SMLNUM = smallest safe number and BIGNUM = largest safe number.  Use\n*  of these scaling factors is not guaranteed to reduce the condition\n*  number of A but works well in practice.\n*\n*  This routine differs from ZGEEQU by restricting the scaling factors\n*  to a power of the radix.  Baring over- and underflow, scaling by\n*  these factors introduces no additional rounding errors.  However, the\n*  scaled entries' magnitured are no longer approximately 1 but lie\n*  between sqrt(radix) and 1/sqrt(radix).\n*\n\n*  Arguments\n*  =========\n*\n*  M       (input) INTEGER\n*          The number of rows of the matrix A.  M >= 0.\n*\n*  N       (input) INTEGER\n*          The number of columns of the matrix A.  N >= 0.\n*\n*  KL      (input) INTEGER\n*          The number of subdiagonals within the band of A.  KL >= 0.\n*\n*  KU      (input) INTEGER\n*          The number of superdiagonals within the band of A.  KU >= 0.\n*\n*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)\n*          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.\n*          The j-th column of A is stored in the j-th column of the\n*          array AB as follows:\n*          AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)\n*\n*  LDAB    (input) INTEGER\n*          The leading dimension of the array A.  LDAB >= max(1,M).\n*\n*  R       (output) DOUBLE PRECISION array, dimension (M)\n*          If INFO = 0 or INFO > M, R contains the row scale factors\n*          for A.\n*\n*  C       (output) DOUBLE PRECISION array, dimension (N)\n*          If INFO = 0,  C contains the column scale factors for A.\n*\n*  ROWCND  (output) DOUBLE PRECISION\n*          If INFO = 0 or INFO > M, ROWCND contains the ratio of the\n*          smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and\n*          AMAX is neither too large nor too small, it is not worth\n*          scaling by R.\n*\n*  COLCND  (output) DOUBLE PRECISION\n*          If INFO = 0, COLCND contains the ratio of the smallest\n*          C(i) to the largest C(i).  If COLCND >= 0.1, it is not\n*          worth scaling by C.\n*\n*  AMAX    (output) DOUBLE PRECISION\n*          Absolute value of largest matrix element.  If AMAX is very\n*          close to overflow or very close to underflow, the matrix\n*          should be scaled.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*          > 0:  if INFO = i,  and i is\n*                <= M:  the i-th row of A is exactly zero\n*                >  M:  the (i-M)-th column of A is exactly zero\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  r, c, rowcnd, colcnd, amax, info = NumRu::Lapack.zgbequb( kl, ku, ab, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 3 && argc != 3)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
  rblapack_kl = argv[0];
  rblapack_ku = argv[1];
  rblapack_ab = argv[2];
  if (argc == 3) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  kl = NUM2INT(rblapack_kl);
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (3th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (3th argument) must be %d", 2);
  ldab = NA_SHAPE0(rblapack_ab);
  n = NA_SHAPE1(rblapack_ab);
  if (NA_TYPE(rblapack_ab) != NA_DFLOAT)
    rblapack_ab = na_change_type(rblapack_ab, NA_DFLOAT);
  ab = NA_PTR_TYPE(rblapack_ab, doublereal*);
  ku = NUM2INT(rblapack_ku);
  m = ldab;
  {
    na_shape_t shape[1];
    shape[0] = m;
    rblapack_r = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  r = NA_PTR_TYPE(rblapack_r, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_c = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  c = NA_PTR_TYPE(rblapack_c, doublereal*);

  zgbequb_(&m, &n, &kl, &ku, ab, &ldab, r, c, &rowcnd, &colcnd, &amax, &info);

  rblapack_rowcnd = rb_float_new((double)rowcnd);
  rblapack_colcnd = rb_float_new((double)colcnd);
  rblapack_amax = rb_float_new((double)amax);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(6, rblapack_r, rblapack_c, rblapack_rowcnd, rblapack_colcnd, rblapack_amax, rblapack_info);
}

void
init_lapack_zgbequb(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zgbequb", rblapack_zgbequb, -1);
}