File: zgbtrs.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (111 lines) | stat: -rw-r--r-- 5,822 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#include "rb_lapack.h"

extern VOID zgbtrs_(char* trans, integer* n, integer* kl, integer* ku, integer* nrhs, doublecomplex* ab, integer* ldab, integer* ipiv, doublecomplex* b, integer* ldb, integer* info);


static VALUE
rblapack_zgbtrs(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_trans;
  char trans; 
  VALUE rblapack_kl;
  integer kl; 
  VALUE rblapack_ku;
  integer ku; 
  VALUE rblapack_ab;
  doublecomplex *ab; 
  VALUE rblapack_ipiv;
  integer *ipiv; 
  VALUE rblapack_b;
  doublecomplex *b; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_b_out__;
  doublecomplex *b_out__;

  integer ldab;
  integer n;
  integer ldb;
  integer nrhs;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, b = NumRu::Lapack.zgbtrs( trans, kl, ku, ab, ipiv, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZGBTRS( TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZGBTRS solves a system of linear equations\n*     A * X = B,  A**T * X = B,  or  A**H * X = B\n*  with a general band matrix A using the LU factorization computed\n*  by ZGBTRF.\n*\n\n*  Arguments\n*  =========\n*\n*  TRANS   (input) CHARACTER*1\n*          Specifies the form of the system of equations.\n*          = 'N':  A * X = B     (No transpose)\n*          = 'T':  A**T * X = B  (Transpose)\n*          = 'C':  A**H * X = B  (Conjugate transpose)\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  KL      (input) INTEGER\n*          The number of subdiagonals within the band of A.  KL >= 0.\n*\n*  KU      (input) INTEGER\n*          The number of superdiagonals within the band of A.  KU >= 0.\n*\n*  NRHS    (input) INTEGER\n*          The number of right hand sides, i.e., the number of columns\n*          of the matrix B.  NRHS >= 0.\n*\n*  AB      (input) COMPLEX*16 array, dimension (LDAB,N)\n*          Details of the LU factorization of the band matrix A, as\n*          computed by ZGBTRF.  U is stored as an upper triangular band\n*          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and\n*          the multipliers used during the factorization are stored in\n*          rows KL+KU+2 to 2*KL+KU+1.\n*\n*  LDAB    (input) INTEGER\n*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.\n*\n*  IPIV    (input) INTEGER array, dimension (N)\n*          The pivot indices; for 1 <= i <= N, row i of the matrix was\n*          interchanged with row IPIV(i).\n*\n*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)\n*          On entry, the right hand side matrix B.\n*          On exit, the solution matrix X.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B.  LDB >= max(1,N).\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, b = NumRu::Lapack.zgbtrs( trans, kl, ku, ab, ipiv, b, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 6 && argc != 6)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
  rblapack_trans = argv[0];
  rblapack_kl = argv[1];
  rblapack_ku = argv[2];
  rblapack_ab = argv[3];
  rblapack_ipiv = argv[4];
  rblapack_b = argv[5];
  if (argc == 6) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  trans = StringValueCStr(rblapack_trans)[0];
  ku = NUM2INT(rblapack_ku);
  if (!NA_IsNArray(rblapack_ipiv))
    rb_raise(rb_eArgError, "ipiv (5th argument) must be NArray");
  if (NA_RANK(rblapack_ipiv) != 1)
    rb_raise(rb_eArgError, "rank of ipiv (5th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_ipiv);
  if (NA_TYPE(rblapack_ipiv) != NA_LINT)
    rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
  ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
  kl = NUM2INT(rblapack_kl);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (6th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (6th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  nrhs = NA_SHAPE1(rblapack_b);
  if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (4th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (4th argument) must be %d", 2);
  ldab = NA_SHAPE0(rblapack_ab);
  if (NA_SHAPE1(rblapack_ab) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of ab must be the same as shape 0 of ipiv");
  if (NA_TYPE(rblapack_ab) != NA_DCOMPLEX)
    rblapack_ab = na_change_type(rblapack_ab, NA_DCOMPLEX);
  ab = NA_PTR_TYPE(rblapack_ab, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = nrhs;
    rblapack_b_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublecomplex*);
  MEMCPY(b_out__, b, doublecomplex, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;

  zgbtrs_(&trans, &n, &kl, &ku, &nrhs, ab, &ldab, ipiv, b, &ldb, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(2, rblapack_info, rblapack_b);
}

void
init_lapack_zgbtrs(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zgbtrs", rblapack_zgbtrs, -1);
}