1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
#include "rb_lapack.h"
extern VOID zgbtrs_(char* trans, integer* n, integer* kl, integer* ku, integer* nrhs, doublecomplex* ab, integer* ldab, integer* ipiv, doublecomplex* b, integer* ldb, integer* info);
static VALUE
rblapack_zgbtrs(int argc, VALUE *argv, VALUE self){
VALUE rblapack_trans;
char trans;
VALUE rblapack_kl;
integer kl;
VALUE rblapack_ku;
integer ku;
VALUE rblapack_ab;
doublecomplex *ab;
VALUE rblapack_ipiv;
integer *ipiv;
VALUE rblapack_b;
doublecomplex *b;
VALUE rblapack_info;
integer info;
VALUE rblapack_b_out__;
doublecomplex *b_out__;
integer ldab;
integer n;
integer ldb;
integer nrhs;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, b = NumRu::Lapack.zgbtrs( trans, kl, ku, ab, ipiv, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZGBTRS( TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )\n\n* Purpose\n* =======\n*\n* ZGBTRS solves a system of linear equations\n* A * X = B, A**T * X = B, or A**H * X = B\n* with a general band matrix A using the LU factorization computed\n* by ZGBTRF.\n*\n\n* Arguments\n* =========\n*\n* TRANS (input) CHARACTER*1\n* Specifies the form of the system of equations.\n* = 'N': A * X = B (No transpose)\n* = 'T': A**T * X = B (Transpose)\n* = 'C': A**H * X = B (Conjugate transpose)\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* KL (input) INTEGER\n* The number of subdiagonals within the band of A. KL >= 0.\n*\n* KU (input) INTEGER\n* The number of superdiagonals within the band of A. KU >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrix B. NRHS >= 0.\n*\n* AB (input) COMPLEX*16 array, dimension (LDAB,N)\n* Details of the LU factorization of the band matrix A, as\n* computed by ZGBTRF. U is stored as an upper triangular band\n* matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and\n* the multipliers used during the factorization are stored in\n* rows KL+KU+2 to 2*KL+KU+1.\n*\n* LDAB (input) INTEGER\n* The leading dimension of the array AB. LDAB >= 2*KL+KU+1.\n*\n* IPIV (input) INTEGER array, dimension (N)\n* The pivot indices; for 1 <= i <= N, row i of the matrix was\n* interchanged with row IPIV(i).\n*\n* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)\n* On entry, the right hand side matrix B.\n* On exit, the solution matrix X.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, b = NumRu::Lapack.zgbtrs( trans, kl, ku, ab, ipiv, b, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_trans = argv[0];
rblapack_kl = argv[1];
rblapack_ku = argv[2];
rblapack_ab = argv[3];
rblapack_ipiv = argv[4];
rblapack_b = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
trans = StringValueCStr(rblapack_trans)[0];
ku = NUM2INT(rblapack_ku);
if (!NA_IsNArray(rblapack_ipiv))
rb_raise(rb_eArgError, "ipiv (5th argument) must be NArray");
if (NA_RANK(rblapack_ipiv) != 1)
rb_raise(rb_eArgError, "rank of ipiv (5th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_ipiv);
if (NA_TYPE(rblapack_ipiv) != NA_LINT)
rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
kl = NUM2INT(rblapack_kl);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (6th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (6th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
nrhs = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (4th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (4th argument) must be %d", 2);
ldab = NA_SHAPE0(rblapack_ab);
if (NA_SHAPE1(rblapack_ab) != n)
rb_raise(rb_eRuntimeError, "shape 1 of ab must be the same as shape 0 of ipiv");
if (NA_TYPE(rblapack_ab) != NA_DCOMPLEX)
rblapack_ab = na_change_type(rblapack_ab, NA_DCOMPLEX);
ab = NA_PTR_TYPE(rblapack_ab, doublecomplex*);
{
na_shape_t shape[2];
shape[0] = ldb;
shape[1] = nrhs;
rblapack_b_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublecomplex*);
MEMCPY(b_out__, b, doublecomplex, NA_TOTAL(rblapack_b));
rblapack_b = rblapack_b_out__;
b = b_out__;
zgbtrs_(&trans, &n, &kl, &ku, &nrhs, ab, &ldab, ipiv, b, &ldb, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_info, rblapack_b);
}
void
init_lapack_zgbtrs(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zgbtrs", rblapack_zgbtrs, -1);
}
|