File: zgees.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (142 lines) | stat: -rw-r--r-- 8,806 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#include "rb_lapack.h"

static logical
rblapack_select(doublecomplex *arg0){
  VALUE rblapack_arg0;

  VALUE rblapack_ret;
  logical ret;

  rblapack_arg0 = rb_funcall(rb_gv_get("Complex"), rb_intern("new"), 2, rb_float_new((double)(arg0->r)), rb_float_new((double)(arg0->i)));

  rblapack_ret = rb_yield_values(1, rblapack_arg0);

  ret = (rblapack_ret == Qtrue);
  return ret;
}

extern VOID zgees_(char* jobvs, char* sort, L_fp select, integer* n, doublecomplex* a, integer* lda, integer* sdim, doublecomplex* w, doublecomplex* vs, integer* ldvs, doublecomplex* work, integer* lwork, doublereal* rwork, logical* bwork, integer* info);


static VALUE
rblapack_zgees(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_jobvs;
  char jobvs; 
  VALUE rblapack_sort;
  char sort; 
  VALUE rblapack_a;
  doublecomplex *a; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_sdim;
  integer sdim; 
  VALUE rblapack_w;
  doublecomplex *w; 
  VALUE rblapack_vs;
  doublecomplex *vs; 
  VALUE rblapack_work;
  doublecomplex *work; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  doublecomplex *a_out__;
  doublereal *rwork;
  logical *bwork;

  integer lda;
  integer n;
  integer ldvs;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  sdim, w, vs, work, info, a = NumRu::Lapack.zgees( jobvs, sort, a, [:lwork => lwork, :usage => usage, :help => help]){|a| ... }\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS, LDVS, WORK, LWORK, RWORK, BWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZGEES computes for an N-by-N complex nonsymmetric matrix A, the\n*  eigenvalues, the Schur form T, and, optionally, the matrix of Schur\n*  vectors Z.  This gives the Schur factorization A = Z*T*(Z**H).\n*\n*  Optionally, it also orders the eigenvalues on the diagonal of the\n*  Schur form so that selected eigenvalues are at the top left.\n*  The leading columns of Z then form an orthonormal basis for the\n*  invariant subspace corresponding to the selected eigenvalues.\n*\n*  A complex matrix is in Schur form if it is upper triangular.\n*\n\n*  Arguments\n*  =========\n*\n*  JOBVS   (input) CHARACTER*1\n*          = 'N': Schur vectors are not computed;\n*          = 'V': Schur vectors are computed.\n*\n*  SORT    (input) CHARACTER*1\n*          Specifies whether or not to order the eigenvalues on the\n*          diagonal of the Schur form.\n*          = 'N': Eigenvalues are not ordered:\n*          = 'S': Eigenvalues are ordered (see SELECT).\n*\n*  SELECT  (external procedure) LOGICAL FUNCTION of one COMPLEX*16 argument\n*          SELECT must be declared EXTERNAL in the calling subroutine.\n*          If SORT = 'S', SELECT is used to select eigenvalues to order\n*          to the top left of the Schur form.\n*          IF SORT = 'N', SELECT is not referenced.\n*          The eigenvalue W(j) is selected if SELECT(W(j)) is true.\n*\n*  N       (input) INTEGER\n*          The order of the matrix A. N >= 0.\n*\n*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)\n*          On entry, the N-by-N matrix A.\n*          On exit, A has been overwritten by its Schur form T.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A.  LDA >= max(1,N).\n*\n*  SDIM    (output) INTEGER\n*          If SORT = 'N', SDIM = 0.\n*          If SORT = 'S', SDIM = number of eigenvalues for which\n*                         SELECT is true.\n*\n*  W       (output) COMPLEX*16 array, dimension (N)\n*          W contains the computed eigenvalues, in the same order that\n*          they appear on the diagonal of the output Schur form T.\n*\n*  VS      (output) COMPLEX*16 array, dimension (LDVS,N)\n*          If JOBVS = 'V', VS contains the unitary matrix Z of Schur\n*          vectors.\n*          If JOBVS = 'N', VS is not referenced.\n*\n*  LDVS    (input) INTEGER\n*          The leading dimension of the array VS.  LDVS >= 1; if\n*          JOBVS = 'V', LDVS >= N.\n*\n*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The dimension of the array WORK.  LWORK >= max(1,2*N).\n*          For good performance, LWORK must generally be larger.\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal size of the WORK array, returns\n*          this value as the first entry of the WORK array, and no error\n*          message related to LWORK is issued by XERBLA.\n*\n*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)\n*\n*  BWORK   (workspace) LOGICAL array, dimension (N)\n*          Not referenced if SORT = 'N'.\n*\n*  INFO    (output) INTEGER\n*          = 0: successful exit\n*          < 0: if INFO = -i, the i-th argument had an illegal value.\n*          > 0: if INFO = i, and i is\n*               <= N:  the QR algorithm failed to compute all the\n*                      eigenvalues; elements 1:ILO-1 and i+1:N of W\n*                      contain those eigenvalues which have converged;\n*                      if JOBVS = 'V', VS contains the matrix which\n*                      reduces A to its partially converged Schur form.\n*               = N+1: the eigenvalues could not be reordered because\n*                      some eigenvalues were too close to separate (the\n*                      problem is very ill-conditioned);\n*               = N+2: after reordering, roundoff changed values of\n*                      some complex eigenvalues so that leading\n*                      eigenvalues in the Schur form no longer satisfy\n*                      SELECT = .TRUE..  This could also be caused by\n*                      underflow due to scaling.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  sdim, w, vs, work, info, a = NumRu::Lapack.zgees( jobvs, sort, a, [:lwork => lwork, :usage => usage, :help => help]){|a| ... }\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 3 && argc != 4)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
  rblapack_jobvs = argv[0];
  rblapack_sort = argv[1];
  rblapack_a = argv[2];
  if (argc == 4) {
    rblapack_lwork = argv[3];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
  } else {
    rblapack_lwork = Qnil;
  }

  jobvs = StringValueCStr(rblapack_jobvs)[0];
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (3th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
  ldvs = lsame_(&jobvs,"V") ? n : 1;
  sort = StringValueCStr(rblapack_sort)[0];
  if (rblapack_lwork == Qnil)
    lwork = 2*n;
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_w = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  w = NA_PTR_TYPE(rblapack_w, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = ldvs;
    shape[1] = n;
    rblapack_vs = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  vs = NA_PTR_TYPE(rblapack_vs, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
  MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  rwork = ALLOC_N(doublereal, (n));
  bwork = ALLOC_N(logical, (lsame_(&sort,"N") ? 0 : n));

  zgees_(&jobvs, &sort, rblapack_select, &n, a, &lda, &sdim, w, vs, &ldvs, work, &lwork, rwork, bwork, &info);

  free(rwork);
  free(bwork);
  rblapack_sdim = INT2NUM(sdim);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(6, rblapack_sdim, rblapack_w, rblapack_vs, rblapack_work, rblapack_info, rblapack_a);
}

void
init_lapack_zgees(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zgees", rblapack_zgees, -1);
}